First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator

We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians H obtained as one-dimensional extensions of natural (geodesic) n-dimensional Hamiltonians L. The Liouville integrability of L implies the (minimal) superintegrability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
Hauptverfasser: Chanu, C., Degiovanni, L., Rastelli, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146855
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator / C. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146855
record_format dspace
spelling Chanu, C.
Degiovanni, L.
Rastelli, G.
2019-02-11T17:17:50Z
2019-02-11T17:17:50Z
2011
First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator / C. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 70H06; 70H33; 53C21
DOI:10.3842/SIGMA.2011.038
https://nasplib.isofts.kiev.ua/handle/123456789/146855
We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians H obtained as one-dimensional extensions of natural (geodesic) n-dimensional Hamiltonians L. The Liouville integrability of L implies the (minimal) superintegrability of H. We prove that, as a consequence of natural integrability conditions, it is necessary for the construction that the curvature of the metric tensor associated with L is constant. As examples, the procedure is applied to one-dimensional L, including and improving earlier results, and to two and three-dimensional L, providing new superintegrable systems.
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S4)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. The research has been partially supported (C.C.) by the European program “Dote ricercatori” (F.S.E. and Regione Lombardia). G.R. is particularly grateful to the University of Waterloo, ON, Canada, where part of the research has been done during a visit. The authors wish to thank F. Magri and R.G. McLenaghan for their suggestions and stimulating discussions about the topic of the present research.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
spellingShingle First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
Chanu, C.
Degiovanni, L.
Rastelli, G.
title_short First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
title_full First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
title_fullStr First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
title_full_unstemmed First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator
title_sort first integrals of extended hamiltonians in n+1 dimensions generated by powers of an operator
author Chanu, C.
Degiovanni, L.
Rastelli, G.
author_facet Chanu, C.
Degiovanni, L.
Rastelli, G.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians H obtained as one-dimensional extensions of natural (geodesic) n-dimensional Hamiltonians L. The Liouville integrability of L implies the (minimal) superintegrability of H. We prove that, as a consequence of natural integrability conditions, it is necessary for the construction that the curvature of the metric tensor associated with L is constant. As examples, the procedure is applied to one-dimensional L, including and improving earlier results, and to two and three-dimensional L, providing new superintegrable systems.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146855
citation_txt First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator / C. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT chanuc firstintegralsofextendedhamiltoniansinn1dimensionsgeneratedbypowersofanoperator
AT degiovannil firstintegralsofextendedhamiltoniansinn1dimensionsgeneratedbypowersofanoperator
AT rastellig firstintegralsofextendedhamiltoniansinn1dimensionsgeneratedbypowersofanoperator
first_indexed 2025-12-07T15:42:21Z
last_indexed 2025-12-07T15:42:21Z
_version_ 1850864714905550848