First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator

We describe a procedure to construct polynomial in the momenta first integrals of arbitrarily high degree for natural Hamiltonians H obtained as one-dimensional extensions of natural (geodesic) n-dimensional Hamiltonians L. The Liouville integrability of L implies the (minimal) superintegrability of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
Hauptverfasser: Chanu, C., Degiovanni, L., Rastelli, G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146855
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:First Integrals of Extended Hamiltonians in n+1 Dimensions Generated by Powers of an Operator / C. Chanu, L. Degiovanni, G. Rastelli // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine