The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I

We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
1. Verfasser: Ormerod, C.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/146862
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146862
record_format dspace
spelling Ormerod, C.M.
2019-02-11T18:05:42Z
2019-02-11T18:05:42Z
2011
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55; 39A13
DOI:10.3842/SIGMA.2011.045
https://nasplib.isofts.kiev.ua/handle/123456789/146862
We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
spellingShingle The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
Ormerod, C.M.
title_short The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_full The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_fullStr The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_full_unstemmed The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_sort lattice structure of connection preserving deformations for q-painlevé equations i
author Ormerod, C.M.
author_facet Ormerod, C.M.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146862
citation_txt The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT ormerodcm thelatticestructureofconnectionpreservingdeformationsforqpainleveequationsi
AT ormerodcm latticestructureofconnectionpreservingdeformationsforqpainleveequationsi
first_indexed 2025-12-01T00:29:26Z
last_indexed 2025-12-01T00:29:26Z
_version_ 1850858891530731520