Geometry of Centroaffine Surfaces in R⁵
We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146863 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-146863 |
|---|---|
| record_format |
dspace |
| spelling |
Bushek, N. Clelland, J.N. 2019-02-11T18:07:01Z 2019-02-11T18:07:01Z 2015 Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A15; 58A15 DOI:10.3842/SIGMA.2015.001 https://nasplib.isofts.kiev.ua/handle/123456789/146863 We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class. This research was supported in part by NSF grants DMS-0908456 and DMS-1206272. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Geometry of Centroaffine Surfaces in R⁵ Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Geometry of Centroaffine Surfaces in R⁵ |
| spellingShingle |
Geometry of Centroaffine Surfaces in R⁵ Bushek, N. Clelland, J.N. |
| title_short |
Geometry of Centroaffine Surfaces in R⁵ |
| title_full |
Geometry of Centroaffine Surfaces in R⁵ |
| title_fullStr |
Geometry of Centroaffine Surfaces in R⁵ |
| title_full_unstemmed |
Geometry of Centroaffine Surfaces in R⁵ |
| title_sort |
geometry of centroaffine surfaces in r⁵ |
| author |
Bushek, N. Clelland, J.N. |
| author_facet |
Bushek, N. Clelland, J.N. |
| publishDate |
2015 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/146863 |
| fulltext |
|
| citation_txt |
Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT bushekn geometryofcentroaffinesurfacesinr5 AT clellandjn geometryofcentroaffinesurfacesinr5 |
| first_indexed |
2025-11-24T06:30:50Z |
| last_indexed |
2025-11-24T06:30:50Z |
| _version_ |
1850844356193288192 |