Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras
The conformal Galilei algebra (CGA) is a non-semisimple Lie algebra labelled by two parameters d and ℓ. The aim of the present work is to investigate the lowest weight representations of CGA with d=1 for any integer value of ℓ. First we focus on the reducibility of the Verma modules. We give a formu...
Saved in:
| Date: | 2015 |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2015
|
| Series: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146864 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras / N. Aizawa, R. Chandrashekar, J. Segar // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. |