Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras
The conformal Galilei algebra (CGA) is a non-semisimple Lie algebra labelled by two parameters d and ℓ. The aim of the present work is to investigate the lowest weight representations of CGA with d=1 for any integer value of ℓ. First we focus on the reducibility of the Verma modules. We give a formu...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| Hauptverfasser: | Aizawa, N., Chandrashekar, R., Segar, J. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2015
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/146864 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras / N. Aizawa, R. Chandrashekar, J. Segar // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
The classification of the Galilei-invariant systems of nonlinear reaction-diffusion equations
von: T. A. Barannyk
Veröffentlicht: (2015) -
Weighted pseudoinversion with singular weights
von: I. V. Sergienko, et al.
Veröffentlicht: (2016) -
Weighted Singular-Valued Decomposition of Matrices and Methods of Solving Problems Weighted Pseudoinverse with Singular Weights
von: Ye. F. Halba, et al.
Veröffentlicht: (2019) -
Necessary and Sufficient Conditions for the Existence of Weighted Singular-Valued Decompositions of Matrices with Singular Weights
von: I. V. Sergienko, et al.
Veröffentlicht: (2015) -
Study of weighted pseudoinverse matrices with in definite singular weights
von: I. V. Serhiienko, et al.
Veröffentlicht: (2022)