On 1-Harmonic Functions
Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; a...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2007 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2007
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/146897 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; and every 7-dimensional SO(2) × SO(6)-invariant absolutely area-minimizing integral current in R8 is real analytic. The assumption on the SO(2) × SO(6)-invariance cannot be removed, due to the first counter-example in R8, proved by Bombieri, De Girogi and Giusti.
|
|---|---|
| ISSN: | 1815-0659 |