WKB Approximation in Noncommutative Gravity

We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Buric, M., Madore, J., Zoupanos, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/146899
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:WKB Approximation in Noncommutative Gravity / M. Buric, J. Madore, G. Zoupanos // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-146899
record_format dspace
spelling Buric, M.
Madore, J.
Zoupanos, G.
2019-02-11T21:17:33Z
2019-02-11T21:17:33Z
2007
WKB Approximation in Noncommutative Gravity / M. Buric, J. Madore, G. Zoupanos // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 8 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 46L87; 83C35
https://nasplib.isofts.kiev.ua/handle/123456789/146899
We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). This work is supported by the EPEAEK programme “Pythagoras II” and co-funded by the European Union(75%) and the Hellenic state (25%). A CEI grant for participation in the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” is gratefully acknowledged.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
WKB Approximation in Noncommutative Gravity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title WKB Approximation in Noncommutative Gravity
spellingShingle WKB Approximation in Noncommutative Gravity
Buric, M.
Madore, J.
Zoupanos, G.
title_short WKB Approximation in Noncommutative Gravity
title_full WKB Approximation in Noncommutative Gravity
title_fullStr WKB Approximation in Noncommutative Gravity
title_full_unstemmed WKB Approximation in Noncommutative Gravity
title_sort wkb approximation in noncommutative gravity
author Buric, M.
Madore, J.
Zoupanos, G.
author_facet Buric, M.
Madore, J.
Zoupanos, G.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/146899
citation_txt WKB Approximation in Noncommutative Gravity / M. Buric, J. Madore, G. Zoupanos // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT buricm wkbapproximationinnoncommutativegravity
AT madorej wkbapproximationinnoncommutativegravity
AT zoupanosg wkbapproximationinnoncommutativegravity
first_indexed 2025-12-02T07:02:01Z
last_indexed 2025-12-02T07:02:01Z
_version_ 1850861838492762112