Long-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II
We investigate the long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation. If |n| < 2t, we have decaying oscillation of order O(t⁻¹/²) as was proved in our previous paper. Near |n|=2t, the behavior is decaying oscillation of order O(t⁻¹/³) and the coefficient...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2015 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/146996 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Long-Time Asymptotics for the Defocusing Integrable Discrete Nonlinear Schrödinger Equation II / H. Yamane // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We investigate the long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation. If |n| < 2t, we have decaying oscillation of order O(t⁻¹/²) as was proved in our previous paper. Near |n|=2t, the behavior is decaying oscillation of order O(t⁻¹/³) and the coefficient of the leading term is expressed by the Painlevé II function. In |n| > 2t, the solution decays more rapidly than any negative power of n.
|
|---|---|
| ISSN: | 1815-0659 |