Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry

For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hype...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2015
Автори: Cohl, H.S., Palmer, R.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147003
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl, R.M. Palmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147003
record_format dspace
spelling Cohl, H.S.
Palmer, R.M.
2019-02-12T18:16:31Z
2019-02-12T18:16:31Z
2015
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl, R.M. Palmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 31C12; 32Q10; 33C05; 33C45; 33C55; 35J05; 35A08; 42A16
DOI:10.3842/SIGMA.2015.015
https://nasplib.isofts.kiev.ua/handle/123456789/147003
For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials.
This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. Much thanks to Willard Miller and George Pogosyan for valuable discussions. We would also like to express our gratitude to the anonymous referees and the editors for this special issue in honour of Luc Vinet, for their significant contributions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
spellingShingle Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
Cohl, H.S.
Palmer, R.M.
title_short Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_full Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_fullStr Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_full_unstemmed Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
title_sort fourier and gegenbauer expansions for a fundamental solution of laplace's equation in hyperspherical geometry
author Cohl, H.S.
Palmer, R.M.
author_facet Cohl, H.S.
Palmer, R.M.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For a fundamental solution of Laplace's equation on the R-radius d-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler-Coulomb and isotropic oscillator potentials.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147003
citation_txt Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry / H.S. Cohl, R.M. Palmer // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT cohlhs fourierandgegenbauerexpansionsforafundamentalsolutionoflaplacesequationinhypersphericalgeometry
AT palmerrm fourierandgegenbauerexpansionsforafundamentalsolutionoflaplacesequationinhypersphericalgeometry
first_indexed 2025-12-07T15:46:36Z
last_indexed 2025-12-07T15:46:36Z
_version_ 1850864982351151104