On the q-Charlier Multiple Orthogonal Polynomials

We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Arvesú, J., Ramírez-Aberasturis, A.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147005
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the q-Charlier Multiple Orthogonal Polynomials / J. Arvesú, A.M. Ramírez-Aberasturis // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We introduce a new family of special functions, namely q-Charlier multiple orthogonal polynomials. These polynomials are orthogonal with respect to q-analogues of Poisson distributions. We focus our attention on their structural properties. Raising and lowering operators as well as Rodrigues-type formulas are obtained. An explicit representation in terms of a q-analogue of the second of Appell's hypergeometric functions is given. A high-order linear q-difference equation with polynomial coefficients is deduced. Moreover, we show how to obtain the nearest neighbor recurrence relation from some difference operators involved in the Rodrigues-type formula.
ISSN:1815-0659