Metaplectic-c Quantomorphisms

In the classical Kostant-Souriau prequantization procedure, the Poisson algebra of a symplectic manifold (M,ω) is realized as the space of infinitesimal quantomorphisms of the prequantization circle bundle. Robinson and Rawnsley developed an alternative to the Kostant-Souriau quantization process in...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2015
Автор: Vaughan, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147006
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Metaplectic-c Quantomorphisms / J. Vaughan // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In the classical Kostant-Souriau prequantization procedure, the Poisson algebra of a symplectic manifold (M,ω) is realized as the space of infinitesimal quantomorphisms of the prequantization circle bundle. Robinson and Rawnsley developed an alternative to the Kostant-Souriau quantization process in which the prequantization circle bundle and metaplectic structure for (M,ω) are replaced by a metaplectic-c prequantization. They proved that metaplectic-c quantization can be applied to a larger class of manifolds than the classical recipe. This paper presents a definition for a metaplectic-c quantomorphism, which is a diffeomorphism of metaplectic-c prequantizations that preserves all of their structures. Since the structure of a metaplectic-c prequantization is more complicated than that of a circle bundle, we find that the definition must include an extra condition that does not have an analogue in the Kostant-Souriau case. We then define an infinitesimal quantomorphism to be a vector field whose flow consists of metaplectic-c quantomorphisms, and prove that the space of infinitesimal metaplectic-c quantomorphisms exhibits all of the same properties that are seen for the infinitesimal quantomorphisms of a prequantization circle bundle. In particular, this space is isomorphic to the Poisson algebra C∞(M).
ISSN:1815-0659