An Integrability Condition for Simple Lie Groups II
It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This i...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2015 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2015
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147007 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147007 |
|---|---|
| record_format |
dspace |
| spelling |
Min-Oo, M. 2019-02-12T18:25:43Z 2019-02-12T18:25:43Z 2015 An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C10; 53C30 DOI:10.3842/SIGMA.2015.027 https://nasplib.isofts.kiev.ua/handle/123456789/147007 It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211]. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications An Integrability Condition for Simple Lie Groups II Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
An Integrability Condition for Simple Lie Groups II |
| spellingShingle |
An Integrability Condition for Simple Lie Groups II Min-Oo, M. |
| title_short |
An Integrability Condition for Simple Lie Groups II |
| title_full |
An Integrability Condition for Simple Lie Groups II |
| title_fullStr |
An Integrability Condition for Simple Lie Groups II |
| title_full_unstemmed |
An Integrability Condition for Simple Lie Groups II |
| title_sort |
integrability condition for simple lie groups ii |
| author |
Min-Oo, M. |
| author_facet |
Min-Oo, M. |
| publishDate |
2015 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
It is shown that a simple Lie group G (≠SL₂) can be locally characterised by an integrability condition on an Aut(g) structure on the tangent bundle, where Aut(g) is the automorphism group of the Lie algebra of G. The integrability condition is the vanishing of a torsion tensor of type (1,2). This is a slight improvement of an earlier result proved in [Min-Oo M., Ruh E.A., in Differential Geometry and Complex Analysis, Springer, Berlin, 1985, 205-211].
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147007 |
| citation_txt |
An Integrability Condition for Simple Lie Groups II / M. Min-Oo // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 6 назв. — англ. |
| work_keys_str_mv |
AT minoom anintegrabilityconditionforsimpleliegroupsii AT minoom integrabilityconditionforsimpleliegroupsii |
| first_indexed |
2025-12-07T16:21:50Z |
| last_indexed |
2025-12-07T16:21:50Z |
| _version_ |
1850867198666473472 |