On the Killing form of Lie Algebras in Symmetric Ribbon Categories

As a step towards the structure theory of Lie algebras in symmetric monoidal categories we establish results involving the Killing form. The proper categorical setting for discussing these issues are symmetric ribbon categories.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2015
Автори: Buchberger, I., Fuchs, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147008
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Killing form of Lie Algebras in Symmetric Ribbon Categories / I. Buchberger, J. Fuchs // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 53 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147008
record_format dspace
spelling Buchberger, I.
Fuchs, J.
2019-02-12T18:26:29Z
2019-02-12T18:26:29Z
2015
On the Killing form of Lie Algebras in Symmetric Ribbon Categories / I. Buchberger, J. Fuchs // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 53 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17Bxx; 18D35; 18D10; 18E05
DOI:10.3842/SIGMA.2015.017
https://nasplib.isofts.kiev.ua/handle/123456789/147008
As a step towards the structure theory of Lie algebras in symmetric monoidal categories we establish results involving the Killing form. The proper categorical setting for discussing these issues are symmetric ribbon categories.
This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html. We are most grateful to the referees for their valuable comments on an earlier version of this note, and in particular for suggesting improvements of the proof of Proposition 3.12. We also thank Christoph Schweigert for discussions and Scott Morrison for bringing Example 2.20(iv) to our attention. JF is supported by VR under project no. 621-2013-4207. JF thanks the ErwinSchr¨odinger-Institute (ESI) for the hospitality during the programs “Modern Trends in TQFT” and “Topological Phases of Quantum Matter” while part of this work was pursued.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Killing form of Lie Algebras in Symmetric Ribbon Categories
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Killing form of Lie Algebras in Symmetric Ribbon Categories
spellingShingle On the Killing form of Lie Algebras in Symmetric Ribbon Categories
Buchberger, I.
Fuchs, J.
title_short On the Killing form of Lie Algebras in Symmetric Ribbon Categories
title_full On the Killing form of Lie Algebras in Symmetric Ribbon Categories
title_fullStr On the Killing form of Lie Algebras in Symmetric Ribbon Categories
title_full_unstemmed On the Killing form of Lie Algebras in Symmetric Ribbon Categories
title_sort on the killing form of lie algebras in symmetric ribbon categories
author Buchberger, I.
Fuchs, J.
author_facet Buchberger, I.
Fuchs, J.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description As a step towards the structure theory of Lie algebras in symmetric monoidal categories we establish results involving the Killing form. The proper categorical setting for discussing these issues are symmetric ribbon categories.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147008
citation_txt On the Killing form of Lie Algebras in Symmetric Ribbon Categories / I. Buchberger, J. Fuchs // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 53 назв. — англ.
work_keys_str_mv AT buchbergeri onthekillingformofliealgebrasinsymmetricribboncategories
AT fuchsj onthekillingformofliealgebrasinsymmetricribboncategories
first_indexed 2025-12-07T17:08:36Z
last_indexed 2025-12-07T17:08:36Z
_version_ 1850870140903620608