Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A

Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized min...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2015
Main Authors: Kanakubo, Y., Nakashima, T.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147010
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147010
record_format dspace
spelling Kanakubo, Y.
Nakashima, T.
2019-02-12T20:32:15Z
2019-02-12T20:32:15Z
2015
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 13F60; 81R50; 17B37
DOI:10.3842/SIGMA.2015.033
https://nasplib.isofts.kiev.ua/handle/123456789/147010
Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals.
This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html. The authors would like to acknowledge the referees for giving them relevant advice and suggestion to improve this article. T.N. is supported in part by JSPS Grants in Aid for Scientific Research ]22540031, ]15K04794.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
spellingShingle Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
Kanakubo, Y.
Nakashima, T.
title_short Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_full Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_fullStr Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_full_unstemmed Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A
title_sort cluster variables on certain double bruhat cells of type (u,e) and monomial realizations of crystal bases of type a
author Kanakubo, Y.
Nakashima, T.
author_facet Kanakubo, Y.
Nakashima, T.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Let G be a simply connected simple algebraic group over C, B and B− be two opposite Borel subgroups in G and W be the Weyl group. For u, v∈W, it is known that the coordinate ring C[Gu,v] of the double Bruhat cell Gu,v=BuB∩B−vB− is isomorphic to an upper cluster algebra A¯(i)C and the generalized minors {Δ(k;i)} are the cluster variables belonging to a given initial seed in C[Gu,v] [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52]. In the case G=SLr₊₁(C), v=e and some special u∈W, we shall describe the generalized minors {Δ(k;i)} as summations of monomial realizations of certain Demazure crystals.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147010
citation_txt Cluster Variables on Certain Double Bruhat Cells of Type (u,e) and Monomial Realizations of Crystal Bases of Type A / Y. Kanakubo, T. Nakashima // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT kanakuboy clustervariablesoncertaindoublebruhatcellsoftypeueandmonomialrealizationsofcrystalbasesoftypea
AT nakashimat clustervariablesoncertaindoublebruhatcellsoftypeueandmonomialrealizationsofcrystalbasesoftypea
first_indexed 2025-12-07T16:21:51Z
last_indexed 2025-12-07T16:21:51Z
_version_ 1850867199746506752