Exact M-Theory Solutions, Integrable Systems, and Superalgebras

In this paper, an overview is presented of the recent construction of fully back-reacted half-BPS solutions in 11-dimensional supergravity which correspond to near-horizon geometries of M2 branes ending on, or intersecting with, M5 and M5′ branes along a self-dual string. These solutions have space-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
1. Verfasser: D'Hoker, E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147017
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Exact M-Theory Solutions, Integrable Systems, and Superalgebras / E. D'Hoker // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 48 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147017
record_format dspace
spelling D'Hoker, E.
2019-02-12T20:57:09Z
2019-02-12T20:57:09Z
2015
Exact M-Theory Solutions, Integrable Systems, and Superalgebras / E. D'Hoker // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 48 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81Q60; 17B80
DOI:10.3842/SIGMA.2015.029
https://nasplib.isofts.kiev.ua/handle/123456789/147017
In this paper, an overview is presented of the recent construction of fully back-reacted half-BPS solutions in 11-dimensional supergravity which correspond to near-horizon geometries of M2 branes ending on, or intersecting with, M5 and M5′ branes along a self-dual string. These solutions have space-time manifold AdS₃×S³×S³ warped over a Riemann surface Σ, and are invariant under the exceptional Lie superalgebra D(2,1;γ)⊕D(2,1;γ), where γ is a real continuous parameter and |γ| is governed by the ratio of the number of M5 and M5′ branes. The construction proceeds by mapping the reduced BPS equations onto an integrable field theory on Σ which is of the Liouville sine-Gordon type. Families of regular solutions are distinguished by the sign of γ, and include a two-parameter Janus solution for γ>0, and self-dual strings on M5 as well as asymptotically AdS₄/Z₂ solutions for γ<0.
This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. It is a pleasure to thank Constantin Bachas, John Estes, Michael Gutperle, Drya Krym, and Paul Sorba for fruitful collaborations on the projects reviewed in this paper. I gratefully acknowledge the warm hospitality and the financial support of the Laboratoire de Physique Th´eorique at the Ecole Normale Sup´erieure, where part of this work was carried out. Finally, I would like to acknowledge the organizers, Decio Levi, Willard Miller, Yvan Saint-Aubin, and Pavel Winternitz for inviting me to the enjoyable conference and celebration in honor of Luc Vinet at the Centre de Recherches Math´ematiques.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Exact M-Theory Solutions, Integrable Systems, and Superalgebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Exact M-Theory Solutions, Integrable Systems, and Superalgebras
spellingShingle Exact M-Theory Solutions, Integrable Systems, and Superalgebras
D'Hoker, E.
title_short Exact M-Theory Solutions, Integrable Systems, and Superalgebras
title_full Exact M-Theory Solutions, Integrable Systems, and Superalgebras
title_fullStr Exact M-Theory Solutions, Integrable Systems, and Superalgebras
title_full_unstemmed Exact M-Theory Solutions, Integrable Systems, and Superalgebras
title_sort exact m-theory solutions, integrable systems, and superalgebras
author D'Hoker, E.
author_facet D'Hoker, E.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper, an overview is presented of the recent construction of fully back-reacted half-BPS solutions in 11-dimensional supergravity which correspond to near-horizon geometries of M2 branes ending on, or intersecting with, M5 and M5′ branes along a self-dual string. These solutions have space-time manifold AdS₃×S³×S³ warped over a Riemann surface Σ, and are invariant under the exceptional Lie superalgebra D(2,1;γ)⊕D(2,1;γ), where γ is a real continuous parameter and |γ| is governed by the ratio of the number of M5 and M5′ branes. The construction proceeds by mapping the reduced BPS equations onto an integrable field theory on Σ which is of the Liouville sine-Gordon type. Families of regular solutions are distinguished by the sign of γ, and include a two-parameter Janus solution for γ>0, and self-dual strings on M5 as well as asymptotically AdS₄/Z₂ solutions for γ<0.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147017
citation_txt Exact M-Theory Solutions, Integrable Systems, and Superalgebras / E. D'Hoker // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 48 назв. — англ.
work_keys_str_mv AT dhokere exactmtheorysolutionsintegrablesystemsandsuperalgebras
first_indexed 2025-11-24T11:38:35Z
last_indexed 2025-11-24T11:38:35Z
_version_ 1850845728281198592
fulltext Symmetry, Integrability and Geometry: Methods and Applications SIGMA 11 (2015), 029, 20 pages Exact M-Theory Solutions, Integrable Systems, and Superalgebras? Eric D’HOKER Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA E-mail: dhoker@physics.ucla.edu URL: http://www.pa.ucla.edu/directory/eric-dhoker Received January 05, 2015, in final form April 03, 2015; Published online April 11, 2015 http://dx.doi.org/10.3842/SIGMA.2015.029 Abstract. In this paper, an overview is presented of the recent construction of fully back- reacted half-BPS solutions in 11-dimensional supergravity which correspond to near-horizon geometries of M2 branes ending on, or intersecting with, M5 and M5′ branes along a self-dual string. These solutions have space-time manifold AdS3 × S3 × S3 warped over a Riemann surface Σ, and are invariant under the exceptional Lie superalgebra D(2, 1; γ) ⊕D(2, 1; γ), where γ is a real continuous parameter and |γ| is governed by the ratio of the number of M5 and M5′ branes. The construction proceeds by mapping the reduced BPS equations onto an integrable field theory on Σ which is of the Liouville sine-Gordon type. Families of regular solutions are distinguished by the sign of γ, and include a two-parameter Janus solution for γ > 0, and self-dual strings on M5 as well as asymptotically AdS4/Z2 solutions for γ < 0. Key words: M-theory; branes; supersymmetry; superalgebras; integrable systems 2010 Mathematics Subject Classification: 81Q60; 17B80 1 Introduction The main theme of my collaboration with Luc Vinet in the mid 1980s was the study of dynamical supersymmetries and associated Lie superalgebras in certain integrable quantum mechanical systems involving magnetic monopoles and dyons. In our first joint paper [23], we showed that the standard Pauli equation for a non-relativistic spinor in the presence of a background Dirac magnetic monopole exhibits a dynamical supersymmetry. The corresponding supercharges close onto the conformal symmetry of the Dirac magnetic monopole, thereby producing the Lie superalgebra OSp(1|2). In a series of subsequent papers [24, 25], we extended these results to integrable systems which include a dyon as well as 1/r2 and 1/r potentials, established the presence of associated dynamical supersymmetries and higher rank Lie superalgebras, and we solved the spectra using purely group theoretic methods. The main theme of the present paper is related to the subject of my earlier work with Luc Vinet, in the sense that it deals with integrable systems, dynamical supersymmetries, and Lie superalgebras, albeit now in the context of 11-dimensional supergravity instead of mechanical systems with a finite number of degrees of freedom. Specifically, we shall present an overview of recent work in which exact solutions with SO(2, 2)× SO(4)× SO(4) isometry and 16 residual supersymmetries (so-called half-BPS solutions) to 11-dimensional supergravity are constructed on space-time manifolds of the form( AdS3 × S3 × S3 ) n Σ. (1.1) ?This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html mailto:dhoker@physics.ucla.edu http://www.pa.ucla.edu/directory/eric-dhoker http://dx.doi.org/10.3842/SIGMA.2015.029 http://www.emis.de/journals/SIGMA/ESSA2014.html 2 E. D’Hoker The radii of the anti-de-Sitter space AdS3 and of the spheres S3 are functions of the two- dimensional Riemann surface Σ, so that the product n with Σ is warped. The construction of [16] proceeds by reducing the BPS equations of 11-dimensional supergravity to the space- time (1.1), and then mapping the reduced BPS equations onto an integrable 2-dimensional field theory which is a close cousin of the Liouville and sine-Gordon theories. Although large families of exact solutions to this field theory, and correspondingly to the supergravity problem, have been constructed in [17, 18, 27], a full understanding and analysis of its integrability properties remains to be achieved. The motivation for this work derives from M-theory, string theory, and gauge/gravity duality as realized by holography. For introductions to these topics and their interrelation, we refer the reader to [3, 20, 26, 29]. The basic constituents of M-theory are the M2 and M5 branes with world volumes of respective dimensions 2 + 1 and 5 + 1. The metric and other fields for one M2 brane, or for a stack of parallel M2 branes, is known analytically in the supergravity approximation. The same holds for M5 branes. But an analytical solution for the intersection of M2 and M5 branes continues to elude us, although solutions with smeared branes have been obtained, and their form is surprisingly simple [34, 44, 48] (see also [35]). In the work reviewed here, it is shown that half-BPS solutions of M2 branes which end on M5 branes or intersect with them, may be constructed analytically and explicitly, in the near-horizon limit. In this presentation to an audience of specialists in integrable systems and Lie algebras and superalgebras, however, we shall emphasize integrability and group theory, and further expand upon those topics. For the physical significance of the solutions, within the context of brane intersections and holography, we refer the reader to the recent paper [6], where these properties are addressed in full. 2 M-theory synopsis M-theory unifies the five critical superstring theories, namely Type I, IIA, IIB, Heterotic E8×E8, and Heterotic SO(32), and provides a natural geometric framework for the unification of the dualities between those superstring theories and some of their compactfications [46]. As M- theory contains gravity, its basic length scale ` is set by Newton’s constant. Since M-theory provides a complete unification, it has no dimensionless free couplings. M-theory permits a perturbative treatment in a space-time which itself has a finite typi- cal length scale, which we shall designate by R. (Note that this condition is not fulfilled by 11-dimensional flat Minkowski space-time.) The perturbation expansion corresponds to the limit where R is either small or large compared to `. It is in those limits that M-theory is best-understood. Two classic cases are as follows. First, when 11-dimensional space-time is compactified on a circle of radius R, then M-theory coincides with Type IIA superstring theory with string coupling R/`, and admits a perturbative expansion for R/` � 1. Second, when the fluctuations of the metric and other fields are of a typical length R which is large com- pared to `, M-theory admits a perturbative expansion in powers of `/R around 11-dimensional supergravity. The Type IIA approximation to M-theory gives access to the dynamics of the theory at all energy scales, including very high energy at the Planck scale, and is therefore of great conceptual value. Most questions of physical importance, including compactification to 4 space-time dimen- sions, however, involve much lower energy scales, for which the supergravity limit may be trusted. Moreover, the 11-dimensional supergravity approximation to M-theory and its compactifications faithfully preserves dualities, and provides a calculable framework for gauge/gravity duality via holography. Exact M-Theory Solutions, Integrable Systems, and Superalgebras 3 2.1 M2 and M5 branes The fundamental constituents of M-theory are M2 branes and M5 branes. An Mp brane (for p = 2, 5) is an extended object in M-theory whose worldvolume has dimension 1 + p, so that p is the spacial dimension of the brane, while the additional 1 accounts for the time dimension on the brane. In 11-dimensional supergravity, whose bosonic field contents consists of a metric ds2 and a 4-form field strength F = dC as we shall see more explicitly below, M5 branes carry magnetic charge N5 of F , while M2 branes carry electric charge, defined by N2 = 1 4π4 ∮ C2 ( ?F + 1 2 C ∧ F ) , N5 = 1 2π2 ∮ C5 F (2.1) for basic homology cycles C2 and C5 of dimensions 7 and 4 respectively. These charges are quantized, so that N2 and N5 are integers. Therefore, it makes sense to refer to the configuration withN2 = 1 as a single M2 brane and toN2 > 1 as a stack ofN2 parallel M2 branes. Analogously, N5 = 1 is the single M5 brane, while N5 > 1 corresponds to s stack of N5 parallel M5 branes. Mp branes living in flat Minkowski space-time are represented by fairly simple classical solutions which bear some similarity to the Schwarzschild solution in pure gravity. The Mp brane solutions have the geometry R1,pnR10−p, and are invariant under Poincaré transformation on R1,p. Corresponding to this product structure, we shall introduce coordinates xµ along the brane with µ = 0, 1, . . . , p as well as coordinates orthogonal to the brane which we represent by a 10− p dimensional vector y. M2 and M5 branes respectively have the following metrics M2 ds2 = ( 1 + c2N2` 6 y6 )− 2 3 dxµdxµ + ( 1 + c2N2` 6 y6 )+ 1 3 dy2, M5 ds2 = ( 1 + c5N5` 3 y3 )− 1 3 dxµdxµ + ( 1 + c5N5` 3 y3 )+ 2 3 dy2. (2.2) Here, y = |y| is the flat Euclidean distance to the brane; dxµ is contracted with the flat Minkowski metric with signature (− + · · ·+) along the brane; and c2, c5 stand for constants which are independent of N2 and N5. Flat Minkowski space-time is a solution to 11-dimensional supergravity with 32 Poincaré supercharges. The M2 brane, or more generally, a stack of parallel M2 branes, preserves 16 of those 32 Poincaré supersymmetries. The same is true for a stack of parallel M5 branes. 2.2 Near-horizon geometry The M2 and M5 brane solutions in supergravity are regular, despite the apparent singularity of the metric at y = 0. To see this, we consider the near-horizon approximation y6 � c2N2` 6 for M2 branes, and y3 � c5N5` 3 for M5 branes, in which the metrics reduce to the following expressions (after changing coordinates to z ∼ `3/y2 for M2 and z2 ∼ `3/y for M5) M2 ds2 = (c2N2) 1 3 `2 ( 1 4 dz2 + dxµdxµ z2 + dy2 − dy2 y2 ) , M5 ds2 = (c5N5) 2 3 `2 ( 4 dz2 + dxµdxµ z2 + dy2 − dy2 y2 ) . (2.3) We recognize the metric of AdS4×S7 with radii proportional to (c2N2) 1 6 ` for M2, and the metric of AdS7 × S4 with radii proportional to (c5N5) 1 3 ` for M5. We remind the reader that these maximally symmetric spaces are the coset spaces Sd+1 = SO(d + 2)/SO(d + 1) and AdSd+1 = SO(d, 2)/SO(d, 1) for Minkowski signature AdS. Note that when N2, N5 � 1, the radii of these 4 E. D’Hoker spaces are large and the curvature is small in units of `, so that the supergravity approximation to M-theory is indeed trustworthy. Finally, the cycles used to define the electric charge of the M2 brane and the magnetic charge of the M5 brane in (2.1) are homeomorphic to the spheres of the near-horizon limits of these branes, namely respectively C2 = S7 and C5 = S4. Gauge/gravity duality is the conjectured holographic equivalence of M-theory on the space- time AdS4×S7 with a 3-dimensional conformal quantum field theory with 32 supercharges but without gravity. This theory is known as ABJM theory, and admits a standard Lagrangian formulation [2, 7, 39]. Analogously, a 6-dimensional conformal quantum field theory with 32 supercharges is expected to exist which is holographically dual to M-theory on AdS7 × S4, but the nature of this theory is still unclear, and it is unlikely that it admits a (standard) Lagrangian formulation. 3 Geometry and symmetries of intersecting branes A stack of N2 parallel M2 branes has 16 residual Poincaré supersymmetries, which in the near- horizon limit is enhanced to 32 supersymmetries forming the Lie superalgebra OSp(8|4,R). Analogously, a stack of N5 parallel M5 branes has 16 residual Poincaré supersymmetries, which in the near-horizon limit become enhanced to 32 supersymmetries forming OSp(8∗|4). 3.1 Intersecting branes with residual supersymmetry When space-time is populated with a generic collection of M2 and M5 branes, the geometry of the branes will be altered by gravitational and other forces of M-theory, and the population will generically preserve no residual supersymmetry. For special angles between the branes, however, some degree of residual supersymmetry may be preserved. We refer the reader to [8, 10, 33, 43, 45] for helpful overviews and references to earlier work. The simplest example is, of course, when the branes are parallel, as we had already discussed earlier. Another example is when the branes have certain mutually orthogonal directions, along with other parallel directions. For a collection of M2 and M5 branes, the simplest such example is obtained when the M2 and M5 branes have 2 parallel directions, all others being orthogonal. We may choose a coordinate system in 11-dimensional space-time in which the M2 brane is along the 012 directions, and the M5 brane along the 013456 directions. This configuration is schematically represented in Table 1, where directions parallel to a brane are indicated with the letter x, and the 10-th dimension of space is designated by \ = 10. Table 1. Half-BPS intersecting M2 and M5 brane configuration. branes 0 1 2 3 4 5 6 7 8 9 \ M2 x x x M5 x x x x x x It may be shown that the configuration of Table 1, for a collection of arbitrary numbers N2 and N5 of M2 and M5-branes respectively, preserves 8 residual Poincaré supersymmetries, and is thus half-BPS. Actually, the configuration of Table 1 is not the most general half-BPS configuration of M2 and M5 branes. Indeed, one may add a stack of N ′5 parallel M5 branes in the direction 01789\, which we shall denote by M5′ as shown in Table 2 below. The full configuration with stacks of N2, N5, N ′5 M2, M5, and M5′ branes respectively preserves 8 Poincaré supersymmetries, and is the most general such BPS configuration. When N2, N5, N ′5 � 1, one expects a corresponding supergravity solution to exist, but no exact solution has been obtained so far. (Solutions are available when one or both of the stacks Exact M-Theory Solutions, Integrable Systems, and Superalgebras 5 Table 2. General half-BPS intersecting M2 and M5 brane configuration. branes 0 1 2 3 4 5 6 7 8 9 \ M2 x x x M5 x x x x x x M5′ x x x x x x of branes are “smeared”.) Our goal will be to obtain supergravity solutions not for the entire system of M2 and M5 branes, but only for their near-horizon limit. 3.2 Symmetries of M2 and M5 and their near-horizon geometry The bosonic symmetries of the M2 and M5 branes separately, and of their half-BPS intersection may essentially be read off from Table 2. The supersymmetric completion of these symmetries is further dictated by the requirement of 32 supercharges for M2 and M5 separately, and 16 supercharges for their half-BPS intersection. We shall begin here by discussing the symme- tries of the M2 and M5 branes separately, leaving the case of intersections to the subsequent subsection. A single M2 brane, or a stack of M2 branes, has a Poincaré symmetry algebra ISO(2, 1) along the M2 brane in the 012 directions, and SO(8) symmetry in the directions 3456789\ orthogonal to the brane, giving in total ISO(2, 1)⊕SO(8). In the near-horizon limit, the bosonic symmetry SO(8) is unchanged, but the Poincaré symmetry gets enhanced to the conformal symmetry algebra in 2 + 1 dimensions. Using the isomorphism SO(2, 3) = Sp(4,R), the full bosonic symmetry is then SO(8) ⊕ Sp(4,R). There is only one Lie superalgebra with this maximal bosonic subalgebra and 32 supercharges, namely OSp(8|4,R), and it is the full Lie superalgebra symmetry of the near-horizon space-time AdS4 × S7. Similarly, a single M5 brane or a stack of M5 branes, has a Poincaré symmetry ISO(1, 5) along the directions 013456 of the M5 brane. Using the isomorphism SO(5) = Sp(4), the symmetry in the directions 2789\ is given by ISO(1, 5) ⊕ Sp(4). In the near-horizon limit, this symmetry gets enhanced to SO(2, 6) ⊕ Sp(4), and extends uniquely to the Lie superalgebra OSp(2, 6|4) = OSp(8∗|4), which is the symmetry of the near-horizon space-time AdS7 × S4. 3.3 Symmetries of half-BPS intersecting branes The symmetry algebras for the half-BPS intersection of M2 branes with M5 branes, or for the half-BPS intersection of M2 branes with M5′ branes, or for the half-BPS intersection of M2, M5, and M5′ branes are all the same, as may again be derived by inspecting Table 2. It is given by the Poincaré algebra ISO(1, 1) along the branes in the 01 directions, along with a first SO(4) in the directions 3456 and a second SO(4) in the directions 789\, giving the total bosonic symmetry ISO(1, 1) ⊕ SO(4) ⊕ SO(4). In the near-horizon limit, this symmetry gets enhanced to SO(2, 2)⊕ SO(4)⊕ SO(4). Which Lie superalgebras have 16 supercharges and SO(2, 2) ⊕ SO(4) ⊕ SO(4) as maximal bosonic subgroup? No simple Lie superalgebra qualifies. We might have anticipated this result by inspecting the part of space-time on which the bosonic algebra acts, which is AdS3×S3×S3. This space is isomorphic to the Lie group B = SO(2, 1) × SO(3) × SO(3) (up to factors of Z2) with Lie algebra B = SO(2, 1)⊕SO(3)⊕SO(3). The isometry algebra of the Lie group B is given by the commuting left and right actions of B on B, as it would be for any Lie group, thereby giving the isometry algebra B ⊕B. The Lie superalgebra we are seeking should follow the same pattern, and should therefore be of the form G⊕G, with B the maximal bosonic subalgebra of G. Recasting B equivalently as B = SO(4)⊕ Sp(2,R), it is manifest that a first candidate for G is 6 E. D’Hoker G = OSp(4|2,R). However, B may also be recast as B = SO(4∗) ⊕ USp(2), so an alternative candidate for G is given by G = OSp(4∗|2). The above candidates are special cases of the general G which consists of the exceptional Lie superalgebra G = D(2, 1; γ), specifically its real form whose maximal bosonic subalgebra is SO(2, 1) ⊕ SO(4). The parameter γ is real and non-zero. In view of the reflection property D(2, 1; γ−1) = D(2, 1; γ) for this real form, the range of γ may be restricted to the interval γ ∈ [−1, 1]. This hypothesis fits nicely with the results of [42], where D(2, 1; γ) arose as one member in the classification of possible 2-dimensional superconformal field theory invariance algebras. For γ = 1, the exceptional Lie superalgebra D(2, 1; γ) reduces to the classical Lie superalgebra OSp(4|2,R), while for γ = −1/2 it reduces to OSp(4∗|2), so that we recover the earlier two candidates. To summarize, the Lie superalgebra which leaves the half-BPS intersection of M2 branes with M5 and M5′ branes invariant is given by D(2, 1; γ)⊕D(2, 1; γ). (3.1) From the explicit supergravity solutions, to be discussed next, we will confirm the symmetry under (3.1), and link the parameter |γ| to the ratio of the number of M5 and M5′ branes. 4 BPS solutions in 11-dimensional supergravity Having developed the geometry and articulated symmetries of intersecting brane configurations, and of their near-horizon limit, in the preceding section, we shall now move onto deriving exact solutions within the context of 11-dimensional supergravity for these brane intersections, in the near-horizon limit. 4.1 11-dimensional supergravity Supergravity in 11-dimensional space-time has 32 supersymmetries and has a single supermul- tiplet which contains the metric ds2 = gmndx mdxn, a Majorana spinor-valued 1-form gravitino ψmdx m and a real 4-form field strength F = 1 24Fmnpqdx m ∧ dxn ∧ dxp ∧ dxq, with m,n, p, q = 0, 1, . . . , 9, \. The field F derives from a 3-form potential C by F = dC and thus obeys the Bianchi identity dF = 0. The field equations are given by [12] d(?F ) = 1 2 F ∧ F, Rmn = 1 12 FmpqrFn pqr + 1 144 gmnFpqrsF pqrs (4.1) up to terms which vanish as the gravitino field ψm vanishes (and which will not be needed in the sequel). Here, Rmn is the Ricci tensor, and ?F denotes the Poincaré dual of F . The field equations derive from an action which contains the Einstein-Hilbert term, the standard kinetic term for F term, and a Chern–Simons term for F . We shall not need the action here. The supersymmetry transformations acting on the gravitino field are given by [12] δεψm = Dmε+ 1 288 (Γm npqr − 8δm nΓpqr)Fnpqrε (4.2) up to terms which vanish as ψm vanishes (and which will not be needed in the sequel). Here, ε is an arbitrary space-time dependent Majorana spinor supersymmetry transformation parameter, Dmε stands for the standard covariant derivative on spinors, the Dirac matrices are defined by the Clifford algebra relations {Γm,Γn} = 2Igmn, and Γ matrices with several lower indices are completely anti-symmetrized in those indices. The supersymmetry transformations of the bosonic fields (g, F ) are odd in ψ and thus vanish as ψ vanishes, and they will not be needed here. Exact M-Theory Solutions, Integrable Systems, and Superalgebras 7 4.2 Supersymmetric solutions Classical solutions are usually considered for vanishing Fermi fields, since classically Fermi fields take values in a Grassmann algebra and have odd grading. Thus, we shall set the gravitino field to zero, ψm = 0. The field equations of (4.1) now hold exactly. A classical solution (g, F ) is said to be BPS or supersymmetric provided there exist a non-zero supersymmetry transformations ε which preserve the condition ψm = 0, when the bosonic fields in (4.2) are evaluated on the solution in question. Thus, the central equation in the study of supersymmetric solutions is the so-called BPS-equation (Dm + Fm) ε = 0, Fm = 1 288 (Γm npqr − 8δm nΓpqr)Fnpqr. (4.3) The vector space of solutions Vε = Vε(g, F ) for the spinor ε depends upon the values taken by the bosonic fields (g, F ). For the flat Minkowski solution with F = 0, the dimension of Vε is maximal and equal to 32, corresponding to 32 Poincaré supersymmetries. For the M2 or M5 brane solutions of (2.2) (along with the corresponding expressions for F which we shall provide later), the dimension of Vε is 16. For the near-horizon limits of these branes given in (2.3), the supersymmetry of the corresponding space-times AdS4 × S7 and AdS7 × S4 is enhanced and the dimension of Vε is now 32, and thus equal to the number of fermionic generators of the superalgebras OSp(8|4,R) and OSp(8∗|4) respectively. We shall be interested in obtaining classical solutions with 16 supersymmetries, namely for which dimVε = 16. Such solutions are referred to as half-BPS. 4.3 Integrability and the BPS equations The BPS equations of (4.3) consist of 11 equations each of which is a 32-component Majorana spinor. This system of 352 equations is subject to 1760 integrability conditions, given by( 1 4 RmnpqΓ pq +DmFn −DnFm + [Fm,Fn] ) ε = 0, (4.4) where we have used the fact that the commutator of the spin covariant derivates Dm is given by the Riemann tensor, [Dm, Dn]ε = 1 4RmnpqΓ pq. Note that, as equations in ε, the integrability conditions (4.4) are purely algebraic. For generic values of the fields g and F , there will be no solutions to (4.4), since a generic field configuration is not supersymmetric. One may investigate the classification of supergravity configurations (g, F ) which satisfy the integrability conditions in (4.4) for a given number of supersymmetries dimVε. This line of attack has proven fruitful, and has given rise to a number of important theorems. It is by now well established that requiring maximal supersymmetry, namely dimVε = 32, leads to a small family of solutions, including flat Minkowski space-time, the AdS × S solutions, and pp-waves [28]. Powerful techniques to analyze the BPS system have been developed in [36] based on the exterior differential algebra of forms constructed out of Killing spinors, and in [40] based on the structure of the holonomy group of (4.3). Increasingly stronger results are being obtained, for example in [38], where it was shown that any solution with dimVε ≥ 30 actually has the maximal number of 32 supersymmetries. An alternative question is for which values of dimVε the BPS integrability conditions guaran- tee that a configuration (g, F ) satisfies the Bianchi identity dF = 0 and the field equations (4.1). Given the results of the preceding paragraph, the answer is affirmative for dimVε ≥ 31. For the families of solutions with space-time of the form AdS3×S3×S3×Σ and dimVε = 16 considered in the present paper, the answer is also affirmative. Similar results hold in Type IIB solutions with 16 supersymmetries [13, 14, 15]. As far as we know, however, the question is open for general families of solutions with dimVε = 16. Finally, for dimVε < 16, the BPS equations do 8 E. D’Hoker not generally imply all the Bianchi identities and field equations, as explicit counter examples are known. Viewed in terms of integrability conditions which reproduce all the Bianchi and field equations for (g, F ), the BPS system bears some striking similarities with the Lax systems, or flatness conditions, in low-dimensional classical integrable systems. The main difference here is that the dimension is high, namely 11. The most interesting cases of similarity are when dimVε is large enough for the BPS equations to imply the Bianchi and field equations, but small enough to allow for large families of solutions. It appears that the case dimVε = 16 satisfies both requirements, as we shall show next. 5 Solving the Half-BPS equations In this section, we shall show that the BPS equations for the geometry of the half-BPS inter- secting branes in the near-horizon limit may be mapped onto a classical integrable conformal field theory in 2 dimensions of the Liouville sine-Gordon type. 5.1 The Ansatz for space-time and fields The bosonic symmetry algebra SO(2, 2) ⊕ SO(4) ⊕ SO(4) of the half-BPS intersecting brane configuration in the near-horizon limit dictates the structure of the space-time manifold of the solution to be of the form( AdS3 × S3 2 × S3 3 ) n Σ. (5.1) Here, S3 2 and S3 3 are two different 3-spheres, Σ is a Riemann surface with boundary, and the product n is warped in the sense that the radii of the spaces AdS3, S3 2 , and S3 3 are all functions of Σ. The action of the isometry algebra SO(2, 2)⊕SO(4)⊕SO(4) is on the space AdS3×S3 2×S3 3 , for every point on Σ. The bosonic fields invariant under SO(2, 2)⊕ SO(4)⊕ SO(4) may be parametrized by ds2 = f2 1ds 2 AdS3 + f2 2ds 2 S3 2 + f2 3ds 2 S3 3 + ds2 Σ, F = db1 ∧ ωAdS3 + db2 ∧ ωS3 2 + db3 ∧ ωS3 3 , C = b1ωAdS3 + b2ωS3 2 + b3ωS3 3 . (5.2) Here, ds2 AdS3 is the SO(2, 2)-invariant metric on AdS3 with radius 1 and ωAdS3 is its volume form. Similarly, ds2 S3 a for a = 2, 3 is the SO(4)-invariant metric on S3 a with radius 1 and ωS3 a is its volume form. The functions f1, f2, f3, b1, b2, b3 are real-valued functions of Σ, and do not depend on AdS3 × S3 2 × S3 3 . Finally, ds2 Σ is a Riemannian metric on Σ. Since the volume forms ωAdS3 and ωS3 a are closed, the form F indeed obeys F = dC which in turn automatically satisfies the Bianchi identity. 5.2 Reduced equations The BPS equations of (4.3) may be restricted to bosonic fields of the form given by the SO(2, 2)⊕ SO(4)⊕SO(4)-invariant Ansatz of (5.2). The resulting reduced BPS equations are quite involved, but may be reduced to a dependence on the following data: • a real-valued function h on Σ; • a complex-valued function G on Σ; • three real constants c1, c2, c3 which satisfy c1 + c2 + c3 = 0. Exact M-Theory Solutions, Integrable Systems, and Superalgebras 9 The functions f1, f2, f3, b1, b2, b3 and the metric ds2 Σ which parametrize the Ansatz may be expressed in terms of these data with the help of the following composite quantities γ = c2 c3 , W± = |G± i|2 + γ±1(GḠ− 1). A lengthy calculation then gives the following expressions for the metric factors f6 2 = h2W−(GḠ− 1) c3 2c 3 3W 2 + , f6 1 = h2W+W− c6 1(GḠ− 1)2 , f6 3 = h2W+(GḠ− 1) c3 2c 3 3W 2 − , ds2 Σ = |∂h|6W+W−(GḠ− 1) c3 2c 3 3h 4 . (5.3) The product of the metric factors is particularly simple, and given by c1c2c3f1f2f3 = σh, (5.4) where σ may take the values ±1, and will be further specified later. The expressions for the functions b1, b2, b3 will be exhibited in equation (5.10) below. 5.3 Regularity conditions The requirements of regularity consist of two parts. First, we have the condition of reality, positivity, and the absence of singularities for the metric factors f2 1 , f2 2 , and f2 3 in the interior of Σ. Second, we have regularity conditions on the boundary of Σ. Clearly, these conditions require c1, c2, c3 and h to be real, as we had already stated earlier, and as we shall continue to assume in the sequel. The requirements of regularity in the interior of Σ are as follows. We must have 1) positivity of f6 1 which requires W+W− ≥ 0; 2) positivity of ds2 Σ which requires γ(GḠ− 1)W+W− ≥ 0; 3) positivity of f6 2 and f6 3 which requires γ(GḠ− 1)W± ≥ 0. A necessary and sufficient condition for all three requirements above to hold true is γ(GḠ− 1) ≥ 0 (5.5) as may be readily verified by inspecting (5.3). The requirements of regularity at the boundary ∂Σ of Σ are more delicate. We begin by stressing that ∂Σ does not correspond to a boundary of the space-time manifold of the super- gravity solution; rather it corresponds to interior points. What is special about the points on ∂Σ is that either one or the other three spheres, S3 2 or S3 3 shrinks to zero radius there. Such points naturally appear when fibering any unit sphere Sn+1 over its equal latitude angle θ in the in- terval [0, π]. At each value of θ, we have a sphere Sn whose radius varies with θ and goes to 0 for θ = 0, π. This behavior is manifest from the relation between the unit radius metrics ds2 Sn and ds2 Sn+1 in this fibration ds2 Sn+1 = dθ2 + (sin θ)2ds2 Sn . From the point of view of the total space Sn+1 the points θ = 0, π are unremarkable. In the geometry at hand, the boundary ∂Σ is 1-dimensional, and the fibration will enter for S4, S7, and AdS7 (the fibration of AdS4 over AdS3 has no vanishing points). In each case, ∂Σ corresponds to the vanishing of either f2 or f3, but never of f2 and f3 simultaneously. Conversely, all points where either f2 or f3 vanishes belong to ∂Σ. Applying these considerations to the formulas for the metric factors in (5.3) and (5.4), we derive the following necessary and sufficient regularity conditions at the boundary ∂Σ: 10 E. D’Hoker 1) h = 0 on ∂Σ in view of f2f3 = 0 there and equation (5.4); 2) W+ = 0 when f3 = 0 and f2 6= 0 from the vanishing of h on ∂Σ; 3) W− = 0 when f2 = 0 and f3 6= 0 from the vanishing of h on ∂Σ. It follows from this that if h = 0 everywhere on the boundary ∂Σ, and if we assume the super- gravity solution, and thus Σ to be connected, then the sign of h must be constant throughout Σ. Without loss of generality, we choose h > 0 in the interior of Σ. (5.6) Finally, we note that the conditions W± = 0 of points 2) and 3) above are readily solved under the assumption (5.5) with the following result W± = 0 ⇔ G = ∓i. (5.7) 5.4 Differential equations The BPS equations (4.3) for bosonic fields given by the Ansatz of (5.2), are solved in part by the equations given in (5.3) and (5.10), provided the functions h and G satisfy the following differential equations ∂w∂w̄h = 0, h∂wG = 1 2 (G+ Ḡ)∂wh (5.8) along with the complex conjugate of the second equation. Here, w, w̄ are local complex coordi- nates, and the above equations are invariant under conformal reparametrizations of w. The second equation in (5.8) guarantees the existence (at least locally) of a real function Φ, defined by the differential equation ∂wΦ = Ḡ(∂w lnh). (5.9) The integrability condition between this equation and its complex conjugate is satisfied as soon as the equations of (5.8) are. In turn, (5.9) and its complex conjugate may be used to eliminate G and Ḡ, which gives the following second order differential equation for Φ 2∂w̄∂wΦ + ∂w̄Φ(∂w lnh)− ∂wΦ(∂w̄ lnh) = 0. It must be remembered, of course, that G must satisfy the inequality (5.5) which in terms of Φ translates to a rather unusual looking inequality, namely γ(|∂wΦ|2 − |∂w lnh|2) > 0. 5.5 Flux field solutions The components of the potential C, namely b1, b2, b3 are found to be given as follows b1 = b01 + ν1 c3 1 ( h(G+ Ḡ) GḠ− 1 + ( 2 + γ + γ−1 − ( γ − γ−1 )) h̃ ) , b2 = b02 − ν2 c2 2c3 ( h(G+ Ḡ) W+ − Φ + h̃ ) , b3 = b03 + ν3 c2c2 3 ( h(G+ Ḡ) W− − Φ + h̃ ) . (5.10) The arbitrary constants parameters b01, b02, b03 account for the residual gauge transformations on the 3-form field C which are allowed within the Ansatz. The factors ν1, ν2, ν3 may take values ±1, but supersymmetry places a constraint on their product σ = −ν1ν2ν3, Exact M-Theory Solutions, Integrable Systems, and Superalgebras 11 where σ is the sign encountered in equation (5.4). The real-valued function Φ has already been defined in (5.9), and is determined in terms of G and h up to an additive constant. The function h̃ is the harmonic function dual to the harmonic function h and satisfies ∂w̄(h+ ih̃) = 0 along with its complex conjugate equation. The electric field strength, suitably augmented to a conserved combination in order to account for the presence of the Chern–Simons interaction, may be decomposed on the reduced geometry (AdS3 × S3 × S3) n Σ, as follows ?F + 1 2 C ∧ F = −dΩ1 ∧ ê345678 + dΩ2 ∧ ê678012 + dΩ3 ∧ ê012345. (5.11) The Bianchi identity dF = 0 and the field equation for F guarantee that the 7-form on each side is a closed differential form, whence the notations dΩa with a = 1, 2, 3, with the understanding that Ωa may or may not be single-valued. Since only the 6-cycle conjugate to dΩ1 is compact, we shall focus on its properties, and we find Ω1 = σν1 c3 2c 3 3 ( Ω0 1 + Ωs 1 + Λ− h̃Φ ) . Here, Ω0 1 is constant, the function Λ satisfies the differential equation ∂wΛ = ih∂wΦ− 2iΦ∂wh and the function Ωs 1 is given by Ωs 1 = ∑ ± h 2W± ( γ±1h ( |G|2 − 1 ) + (Φ± h̃)(G+ Ḡ) ) . The M2 brane charges of a solution are obtained by integrating (5.11) over compact seven-cycles, which consist of the warped product of S3 2 × S3 3 over a curve in Σ that is spanned between one point on ∂Σ where f3 = 0 and another point on ∂Σ where f3 = 0. These charges give the net numbers of M2 branes ending respectively on M5 and M5′ branes. 6 Map to an integrable system The equations obeyed by h and G in the interior of Σ may be summarized as follows For h we have ∂w∂w̄h = 0, h > 0, (6.1) while for G we have ∂wG = 1 2 (G+ Ḡ)∂w lnh, γ(GḠ− 1) > 0. The conditions on the boundary of Σ may be summarized as follows h = 0, G = ±i. These equations are solvable in the following sense. For any given Σ, one begins by solving for h and obtaining a real harmonic function h that is strictly positive in the interior of Σ and vanishes on ∂Σ. The algorithm for doing so 12 E. D’Hoker is routine, as the differential equation, the positivity condition, and the boundary condition obey a superposition principle under addition with positive coefficients. If h1 and h2 are real harmonic, positive inside Σ, and vanishing on the boundary ∂Σ, then so is α1h1 + α2h2 for any real positive coefficients α1, α2 which are not both zero. Having solved for h, we now assume that h is given by one such solution, and we proceed to considering the equations for G and Ḡ, namely the second differential equation in (6.1) along with its complex conjugate. For fixed h, these equations are linear in G provided the superposition is carried out with real coefficients. If G1 and G2 obey the second differential equation in (6.1), then so does a1G1 + a2G2 for any real a1, a2. However, the positivity condition γ(GḠ − 1) > 0 and the boundary condition G = ±i will not be maintained by such linear superposition, even if with real coefficients. The key reason is that the first condition is not linear. Thus, the linearity of the differential equations for G is obstructed by the non-linearity of the positivity and boundary conditions, and the full problem is genuinely non-linear. 6.1 Associated integrable system To expose the presence of an integrable system, we parametrize the complex function G by polar coordinates in terms of real functions ψ > 0 and θ G = ψeiθ. The non-linear constraint then reduces to the linear relation γ(ψ − 1) > 0 in the interior of Σ while the boundary conditions are also linear, and given by ψ = 1, θ = ±π 2 . However, the differential equation for G, and its complex conjugate equation, expressed in terms of the variables ψ and θ are now non-linear, and given by ∂w lnψ + i∂wθ = ( 1 + e−iθ ) ∂w lnh, ∂w̄ lnψ − i∂w̄θ = ( 1 + e+iθ ) ∂w̄ lnh. (6.2) The integrability condition on the system (6.2), viewed as equations for θ, will involve both ψ and θ, and will be of no interest here. When the system (6.2) is viewed as equations for ψ, the integrability condition is a second order equation for the field θ only, and is given by 2∂w̄∂wθ + 2 sin θ(∂w̄∂w lnh) + e+iθ∂wθ(∂w̄ lnh) + e−iθ∂w̄θ(∂w lnh) = 0. (6.3) This equation is integrable in the classical sense. To see this, one may either interpret (6.2) as a Bäcklund transformation for the equation (6.3), or one may expose a Lax pair associated with (6.3). That Lax pair does indeed exist, and is given as follows Lw = ∂w +Aw, Aw = +i∂wθ − ( 1 + e−iθ ) ∂w lnh, Lw̄ = ∂w̄ +Aw̄, Aw̄ = −i∂w̄θ − ( 1 + e+iθ ) ∂w̄ lnh. Flatness of the connection Aw, Aw̄ and of the covariant derivatives Lw and Lw̄ implies equa- tion (6.3). The associated Lax equations Lwψ = Lw̄ψ = 0 Exact M-Theory Solutions, Integrable Systems, and Superalgebras 13 coincide with the set of equations (6.2) that we started with. In summary, equation (6.3) has an associated Lax pair, and is integrable in the classical sense. Furthermore, equation (6.3) is invariant under conformal reparametrizations of the local complex coordinates w and w̄. Using this invariance, one may choose local complex coordina- tes w, w̄ such that h = =(w), so that equation (6.3) becomes 2∂w̄∂wθ + 2 (w − w̄)2 sin θ − 1 w − w̄ e+iθ∂wθ + 1 w − w̄ e−iθ∂w̄θ = 0. This equation now depends upon a single real field θ and is clearly related to the sine-Gordon and Liouville equations [22], specifically the Liouville equation on the upper half plane with the Poincaré constant negative curvature metric ds2 Σ = |dw|2 =(w)2 as discussed, for example, in [21]. 7 Role of the superalgebra D(2, 1; γ) ⊕D(2, 1; γ) Earlier in this paper, we have stated the expectation that the supersymmetries of the half-BPS solution of intersecting M2, M5, and M5′ branes in the near-horizon limit will generate the Lie superalgebra D(2, 1; γ) ⊕ D(2, 1; γ). In this section, we shall review the structure of the Lie superalgebra D(2, 1; γ), list some of its properties, and show that it is indeed realized by the solutions obtained above. 7.1 The Lie superalgebra D(2, 1; γ) The complex Lie superalgebra D(2, 1; γ) is the only finite-dimensional simple Lie superalgebra that depends on a continuous parameter, namely the complex parameter γ. The maximal bosonic subalgebra of D(2, 1; γ) is SL(2,C) ⊕ SL(2,C) ⊕ SL(2,C). The smallest classical Lie superalgebra which contains D(2, 1; γ) for all values of γ is OSp(9|8). An equivalent way of representing γ is by three complex numbers c1, c2, c3 modulo an overall complex rescaling, which satisfy c1 + c2 + c3 = 0 and γ = c2/c3. The six permutations σ ∈ S3 of the numbers c1, c2, c3 induce permutations σ(γ) = cσ(2)/cσ(3) under which the complex algebra is invariant D(2, 1;σ(γ)) = D(2, 1; γ). The complex Lie superalgebra D(2, 1; γ) has three inequivalent real forms which are denoted D(2, 1; γ, p) for p = 0, 1, 2, and which have γ real and maximal bosonic subalgebra SO(2, 1) ⊕ SO(4 − p, p). The real form of interest here is D(2, 1; γ, 0); its maximal bosonic subalgebra is isomorphic to SO(2, 1) ⊕ SO(3) ⊕ SO(3). The automorphism group S3 is reduced to the subgroup S2 which permutes the two SO(3) algebras, and acts by σ(γ) = γ−1. The generators of the maximal bosonic subalgebra1 SO(2, 1)1 ⊕ SO(3)2 ⊕ SO(3)3 of the real form D(2, 1; γ, 0) will be denoted by T (a) i , where the index a = 1, 2, 3 refers to the simple components of the algebra and the index i = 1, 2, 3 labels the three generators corresponding to component a. For example, T (1) i are the three generators of SO(2, 1)1. The bosonic structure relations are given as follows[ T (a) i , T (b) j ] = iδabεijkη k` (a)T (a) ` , 1The labels on the simple factors are introduced in analogy with the notation of the corresponding factor spaces in (5.1) and (5.2). 14 E. D’Hoker where η(2) = η(3) = diag(+ + +) are the invariant metrics of SO(3)2 and SO(3)3 and η(1) = diag(−,+,+) is the invariant metric of SO(2, 1)1. The fermionic generators of D(2, 1; γ, 0) transform under the 2-dimensional irreducible rep- resentation of each one of the bosonic simple subalgebras. We shall denote these generators by F with components Fα1,α2,α3 where αa are 2-dimensional spinor indices. This characteriza- tion uniquely determines the commutation relations of T (a) with F . The remaining structure relations are given by the anti-commutators of F which take the form {Fα1,α2,α3 , Fβ1,β2,β3} = c1(Cσi)α1β1Cα2β2Cα3β3T (1) i + c2Cα1β1(Cσi)α2β2Cα3β3T (2) i + c3Cα1β1Cα2β2(Cσi)α3β3T (3) i . Here, σi are the Pauli matrices, C = iσ2, γ = c2/c3, and c1 + c2 + c3 = 0. For the complex Lie superalgebra D(2, 1; γ), the parameters c1, c2, c3 are complex while for the real forms these parameters are real. For the real form D(2, 1; γ, 0), the automorphism γ → γ−1 amounts to interchanging the generators with labels a = 2 and a = 3. 7.2 Invariance of the solutions under D(2, 1; γ, 0) ⊕D(2, 1; γ, 0) In this subsection, we shall summarize the arguments of Appendix D of [19] in which a proof is given of the invariance under D(2, 1; γ, 0)⊕D(2, 1; γ, 0) of the half-BPS supergravity solutions. It is manifest that all solutions have 9 Killing vectors vm which correspond to the 9 generators of SO(2, 1)1 ⊕ SO(3)2 ⊕ SO(3)3, and which satisfy ∇mvn +∇nvm = 0. (7.1) By construction, the half-BPS solutions also have 16 supersymmetries, or Killing spinors ε. Nine Killing vectors and sixteen Killing are precisely the correct numbers of bosonic and fermionic generators needed for D(2, 1; γ, 0)⊕D(2, 1; γ, 0). To prove that these Killing vectors and Killing spinors together generate the algebra D(2, 1; γ, 0)⊕D(2, 1; γ, 0), we must ensure that the struc- ture relations of D(2, 1; γ, 0) ⊕D(2, 1; γ, 0) are satisfied. This is manifest for the commutation relations of two bosonic generators, and of one bosonic and one fermionic generator. Thus, it remains to show that the composition of two fermionic generators gives the bosonic generators with the correct parameters c1, c2, c3. To obtain the composition law for two Killing spinors ε and ε′, one proceeds as follows. Let ε and ε′ satisfy the BPS equations (4.3), so that they are Killing spinors. One proves, using the same BPS equations, that one has ∇m ( ε̄Γnε ′) = 1 3 ( ε̄Γpqε′ ) Fmnpq. By symmetrizing both sides in m and n, and using the anti-symmetry of F in these indices, one readily finds that the combination vm = ε̄Γmε ′ satisfies the Killing vector equation (7.1). An overall rescaling of ε, ε′ and vm is immaterial in establishing the structure relations of D(2, 1; γ, 0)⊕D(2, 1; γ, 0), but the relative normalizations of the various generators are crucial to extract the correct ratio γ. Proper normalization may be enforced as follows. We begin by introducing an invariant basis of 2-component Killing spinors χη11 , χη22 , and χη33 respectively of SO(2, 1)1, SO(3)2, and SO(3)3 for ηa = ±1 and a = 1, 2, 3. The Killing spinors are normalized as follows −iχ̄η1χ η′ 1 = (χη2)†χη ′ 2 = (χη3)†χη ′ 3 = δηη ′ . Exact M-Theory Solutions, Integrable Systems, and Superalgebras 15 We decompose the 32-component spinor ε on the tensor product of these basis Killing spinors ε = χη11 ⊗ χ η2 2 ⊗ χ η3 3 ⊗ ζη1,η2,η3 , where, for each assignment of ηa, the spinor ζ has 4 components. To evaluate the metric factors and the Killing vectors in terms of ζ, we introduce an adapted basis of Dirac matrices, in frame basis, with indices a1 = 0, 1, 2, a2 = 3, 4, 5, a3 = 6, 7, 8, and a = 9, \, given by Γa1 = γa1 ⊗ I2 ⊗ I2 ⊗ σ1 ⊗ σ3, σ1 = γ1 = γ4 = γ7 = γ9, Γa2 = I2 ⊗ γa2 ⊗ I2 ⊗ σ2 ⊗ σ3, σ2 = −iγ0 = γ3 = γ6 = γ\, Γa3 = I2 ⊗ I2 ⊗ γa3 ⊗ σ3 ⊗ σ3, σ3 = γ2 = γ5 = γ8, Γa = I2 ⊗ I2 ⊗ I2 ⊗ I2 ⊗ γa. The relations between the Killing spinors and vectors may be expressed in this manner as well. We have ε̄Γaε′ = 0, as well as, for η = ± ε̄Γa1ε′ = +2c1f1 ( χ̄η11 γ a1χη11 ) , ε̄Γa2ε′ = −2ic2f2 ( (χη22 )†γa2χη22 ) , ε̄Γa3ε′ = −2ic3f3 ( (χη33 )†γa3χη33 ) . The Killing vectors vηaa are related to the normalized Killing vectors v̂aa and to the normalized Killing spinors as follows (vη1)a1 = f1(v̂η1)a1 = f1χ̄ η1 1 γ a1χη11 , (vη2)a2 = f2(v̂η2)a2 = f2(χη22 )†γa2χη22 , (vη3)a3 = f3(v̂η3)a3 = f3(χη33 )†γa1χη33 so that the physical Killing vectors vA are gives as follows ε̄Γa1ε′ = 2c1(vη11 )a1 , ε̄Γa2ε′ = 2c2(vη22 )a2 , ε̄Γa3ε′ = 2c3(vη33 )a3 . The parameters c1, c2, and c3 now naturally emerge in the structure relations, and are seen to reproduce those of the algebra D(2, 1; γ, 0)+ ⊕ D(2, 1; γ, 0)− for the indices η = ±. This concludes the proof of the invariance of the solutions under this Lie superalgebra. 8 Families and moduli spaces of exact solutions In this section, we shall give a brief overview of the solutions that have been derived with the help of the approach developed in the preceding sections of this paper, and refer the reader to Sections 7 and 8 of [6] for details and derivations. We begin with four basic results. 1. All solutions arise as families in the parameter γ ∈ [−1,+1], which governs the dependence of the supergravity fields on the γ-independent data (h,G). 2. Across the value γ = 0 the number of M5 branes tends to zero, which leads to the decompactification of the directions 3456 in Table 2, which in turn corresponds to sending the radius of the sphere S3 2 to infinity. (A mirror image decompactification takes place at γ = ∞, where the number of M5′ branes tends to zero and the radius of S3 3 diverges.) Across the value γ = −1 all three components decompactify and the spheres are permuted into one another. 3. Solution for which Σ is compact without boundary have positive γ, constant h, G, constant f1, f2, f3, with f2 3 = γf2 2 and f2 1 = γf2 2 /(1 + γ). In this case, the expression for the metric ds2 Σ needs to be defined with some extra care as the naive form in (5.3) would vanish for constant h. 16 E. D’Hoker 4. A regular solution with γ < 0 cannot have more than one asymptotic AdS region, and therefore cannot be dual to an interface conformal field theory. An important implication of point 3) above is the uniqueness of solutions dual to two- dimensional conformal field theories, namely they must be of the form AdS3 × S3 × S3 × T 2, where T 2 is a flat two-torus, and the product is direct. This is the near-horizon geometry of M2 branes suspended between M5 branes, in the limit where the M5 branes have been smeared [10]. The implication of point 3) is that the infrared dynamics on the M2 branes always restores the translation symmetry which would otherwise have been broken by te localized M5 branes. This dynamical behavior should be contrasted with the analogous situation of D3 branes suspended between NS5 branes and D5 branes, where the 3-dimensional field theory on the suspended D3 branes has many strongly-coupled infrared fixed points [30, 31, 32], which are in one-to-one cor- respondence with a rich set of half-BPS solutions of the Type IIB supergravity equations [1, 4, 5]. Under the regularity conditions spelled out in section 5, for the case where Σ has a bound- ary and away from the values γ = 0,−1, the solutions of the differential equations (5.9) and the boundary conditions (5.6) and (5.7) produce regular, fully back-reacted supergravity near- horizon limits of half-BPS intersecting M2, M5, and M5′ branes. 8.1 Global solutions with γ > 0 The maximally supersymmetric solution AdS4 × S7 corresponds to γ = 1. It admits a defor- mation by one real continuous parameter λ to a Janus solution, discovered in [18]. Mapping Σ to the upper half complex plane with the real axis as boundary, and using global complex coordinates w, w̄ on Σ, the functions (h,G) are given as follows h = i ( 1 w − w ) + c.c., G = i |w|+ |w|−1 + λ(w − w̄)|w|−1 w̄ + w̄−1 . Here, λ can take any real value. The undeformed AdS4 × S7 solution corresponds to λ = 0. The corresponding metric functions f1, f2, f3, ds2 Σ may be obtained for any γ > 0 from the equations of (5.3), and the flux potentials b1, b2, b3 may be obtained from (5.10). The solutions describe a superconformal domain wall of the dual gauge theory on the M2 brane. This two- parameter deformation of AdS4 × S7 was discovered by independent means as a solution of gauged 4-dimensional supergravity in [9], with whom we find precise agreement. 8.1.1 String and semi-infinite M2 branes Besides the strictly regular Janus solutions of the preceding paragraph, there are also solution with a mild singularity which have non-vanishing M5 charge and are analogous to the highly curved NS5 brane and D5 brane regions of [1, 4, 5]. Mapping Σ again to the upper half plane with complex coordinates w, w̄, the functions (h,G) are given by h = −i(w − w̄), G = ±G0 ± N+1∑ n=1 ζn=(w) (w̄ − xn)|w − xn| . Here, N is a positive integer, and xn and ζn are arbitrary real moduli of the solutions. The function G0 may take the values of either G0 = i, in which case the conformal boundary of the solution is that of a deformed AdS7 × S4 space-time, or G0 may take the value G0 = iw/|w|, in which case the conformal boundary of the solution is that of a deformed AdS4/Z2 × S7 space- time. These solutions describe self-dual strings respectively on the world-volume of M5 branes, or semi-infinite M2 branes. Exact M-Theory Solutions, Integrable Systems, and Superalgebras 17 8.2 Global solutions with γ < 0 The maximally supersymmetric solution AdS7 × S4 has γ = −1 2 , and corresponds to the near- horizon limit of a stack of parallel M5 branes. Mapping Σ again to the upper half plane with complex coordinates w, w̄, the functions (h,G) for this solution are given by h = −i(w − w̄), G = i ( −1 + w + 1 |w + 1| + w − 1 |w − 1 ) . (8.1) The effects of taking γ away from the point γ = −1 2 include a deformation of the metric away from the maximally symmetric metric, to one that has only the reduced symmetry SO(2, 2) ⊕ SO(4) ⊕ SO(4), as well as turning on the flux fields associated with M5′ and M2 branes, but without generating either a net magnetic or electric charge. 8.2.1 Self-dual strings and Young tableaux The solution of (8.1) was generalized in [17] by the addition of an arbitrary number 2N of cap singularities in G and, for Σ the upper half plane with coordinates w, w̄, is given by iG = 1 + 2N+2∑ n=1 (−)n w − ξn |w − ξn| (8.2) for a set of 2N + 2 real points ξn ∈ R subject to the ordering ξ1 < ξ2 < · · · < ξ2N+2. The parameter γ is allowed to take any negative value. The solutions are asymptotic to a single copy of AdS7×S4, and correspond to M2 branes ending on, or intersecting with, M5 and M5′ branes. The holographic duals of these solutions correspond to conformal defects in the 6-dimensional (2,0) theory, and more concretely arise from the insertion of surface operators in that theory. More concretely, the space-time manifold of the solutions has 2N + 1 independent non- contractible 4-cycles which are topologically 4-spheres. With the sign convention adopted for G in (8.2), there are N + 1 cycles supporting M5 brane charges, and N cycles supporting M5′ brane charges. On Σ, the end points of the corresponding curves are the boundary ∂Σ. A basis may be chosen in terms of curves which join the boundary to the left of ξn to a point on the boundary to the right of ξn+1. When n = 2a is even we obtain a M5′ charge M (2) a , while when n = 2b− 1 is odd, we obtain a M5 charge M (3) b , given by M(2) a = 4ν2γ c3 2 (ξ2a+1 − ξ2a) , a = 1, . . . , N, M (3) b = 4ν3γ c3 3 (ξ2b − ξ2b−1) , b = 1, . . . , N + 1. These charges determine a Young tableau, and a corresponding irreducible representation of SU(N). This Young tableau was conjectured in [17] to describe a surface operator in the corre- sponding representation of SU(N), in analogy with the behavior of holographic Wilson lines in 4-dimensional N = 4 super Yang–Mills theory [37, 41, 47]. 9 Summary and open problems We have produced an explicit map between the BPS equations for half-BPS solutions of inter- secting M2, M5, and M5′ branes in the near-horizon limit, and a 2-dimensional field theory, which we have shown to be integrable, and to possess a Lax pair. We have constructed a large family of solutions to the integrable system and to the supergravity BPS equations, and given their physical interpretation, as far as is presently known. 18 E. D’Hoker However, a full study of the integrable system has not been carried out yet, and is presently the biggest obstacle to a complete classification of all half-BPS solutions of intersection M2, M5, and M5′ branes in the near-horizon limit. We hope that, in this brief article, the mechanics of this integrable system, and the motivation for its further study, have been clearly exposed, so that the purpose of a systematic investigation is now clearly defined. We conclude by stressing that the analogous problem in 10-dimensional Type IIB on AdS4× S2 × S2 n Σ or on AdS2 × S4 × S2 n Σ and 6-dimensional Type 4b supergravities on AdS2 × S2 n Σ are, from some points of view, better understood. This is due, in large part, to the fact that the fermion contents of those supergravities is chiral so that the partial differential equations for various reduced metric and flux components become genuine Cauchy–Riemann equations which may be solved in terms of holomorphic or harmonic functions. Indeed, all the supergravities mentioned earlier may be solved in terms of harmonic functions subject to certain constraints [11, 13, 15]. Acknowledgments It is a pleasure to thank Constantin Bachas, John Estes, Michael Gutperle, Drya Krym, and Paul Sorba for fruitful collaborations on the projects reviewed in this paper. I gratefully acknowledge the warm hospitality and the financial support of the Laboratoire de Physique Théorique at the Ecole Normale Supérieure, where part of this work was carried out. Finally, I would like to acknowledge the organizers, Decio Levi, Willard Miller, Yvan Saint-Aubin, and Pavel Winternitz for inviting me to the enjoyable conference and celebration in honor of Luc Vinet at the Centre de Recherches Mathématiques. References [1] Aharony O., Berdichevsky L., Berkooz M., Shamir I., Near-horizon solutions for D3-branes ending on 5- branes, Phys. Rev. D 84 (2011), 126003, 19 pages, arXiv:1106.1870. [2] Aharony O., Bergman O., Jafferis D.L., Maldacena J., N = 6 superconformal Chern–Simons-matter theories, M2-branes and their gravity duals, J. High Energy Phys. 2008 (2008), no. 10, 091, 38 pages, arXiv:0806.1218. [3] Aharony O., Gubser S.S., Maldacena J., Ooguri H., Oz Y., Large N field theories, string theory and gravity, Phys. Rep. 323 (2000), 183–386, hep-th/9905111. [4] Assel B., Bachas C., Estes J., Gomis J., Holographic duals of D = 3 N = 4 superconformal field theories, J. High Energy Phys. 2011 (2011), no. 8, 087, 30 pages, arXiv:1106.4253. [5] Assel B., Bachas C., Estes J., Gomis J., IIB duals of D = 3 N = 4 circular quivers, J. High Energy Phys. 2012 (2012), no. 12, 044, 47 pages, arXiv:1210.2590. [6] Bachas C., D’Hoker E., Estes J., Krym D., M-theory solutions invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortschr. Phys. 62 (2014), 207–254, arXiv:1312.5477. [7] Bagger J., Lambert N., Modeling multiple M2-branes, Phys. Rev. D 75 (2007), 045020, 7 pages, hep-th/0611108. [8] Berman D.S., M-theory branes and their interactions, Phys. Rep. 456 (2008), 89–126, arXiv:0710.1707. [9] Bobev N., Pilch K., Warner N.P., Supersymmetric Janus solutions in four dimensions, J. High Energy Phys. 2014 (2014), no. 6, 058, 49 pages, arXiv:1311.4883. [10] Boonstra H.J., Peeters B., Skenderis K., Brane intersections, anti-de Sitter space-times and dual supercon- formal theories, Nuclear Phys. B 533 (1998), 127–162, hep-th/9803231. [11] Chiodaroli M., D’Hoker E., Guo Y., Gutperle M., Exact half-BPS string-junction solutions in six-dimensional supergravity, J. High Energy Phys. 2011 (2011), no. 12, 086, 58 pages, arXiv:1107.1722. [12] Cremmer E., Julia B., Scherk J., Supergravity in theory in 11 dimensions, Phys. Lett. B 76 (1978), 409–412. [13] D’Hoker E., Estes J., Gutperle M., Exact half-BPS type IIB interface solutions. I. Local solution and supersymmetric Janus, J. High Energy Phys. 2007 (2007), no. 6, 021, 60 pages, arXiv:0705.0022. http://dx.doi.org/10.1103/PhysRevD.84.126003 http://arxiv.org/abs/1106.1870 http://dx.doi.org/10.1088/1126-6708/2008/10/091 http://arxiv.org/abs/0806.1218 http://dx.doi.org/10.1016/S0370-1573(99)00083-6 http://arxiv.org/abs/hep-th/9905111 http://dx.doi.org/10.1007/JHEP08(2011)087 http://arxiv.org/abs/1106.4253 http://dx.doi.org/10.1007/JHEP12(2012)044 http://arxiv.org/abs/1210.2590 http://dx.doi.org/10.1002/prop.201300039 http://arxiv.org/abs/1312.5477 http://dx.doi.org/10.1103/PhysRevD.75.045020 http://arxiv.org/abs/hep-th/0611108 http://dx.doi.org/10.1016/j.physrep.2007.10.002 http://arxiv.org/abs/0710.1707 http://dx.doi.org/10.1007/JHEP06(2014)058 http://arxiv.org/abs/1311.4883 http://dx.doi.org/10.1016/S0550-3213(98)00512-4 http://arxiv.org/abs/hep-th/9803231 http://dx.doi.org/10.1007/JHEP12(2011)086 http://arxiv.org/abs/1107.1722 http://dx.doi.org/10.1016/0370-2693(78)90894-8 http://dx.doi.org/10.1088/1126-6708/2007/06/021 http://arxiv.org/abs/0705.0022 Exact M-Theory Solutions, Integrable Systems, and Superalgebras 19 [14] D’Hoker E., Estes J., Gutperle M., Exact half-BPS type IIB interface solutions. II. Flux solutions and multi-Janus, J. High Energy Phys. 2007 (2007), no. 6, 022, 56 pages, arXiv:0705.0024. [15] D’Hoker E., Estes J., Gutperle M., Gravity duals of half-BPS Wilson loops, J. High Energy Phys. 2007 (2007), no. 6, 063, 52 pages, arXiv:0705.1004. [16] D’Hoker E., Estes J., Gutperle M., Krym D., Exact half-BPS flux solutions in M-theory. I. Local solutions, J. High Energy Phys. 2008 (2008), no. 8, 028, 55 pages, arXiv:0806.0605. [17] D’Hoker E., Estes J., Gutperle M., Krym D., Exact half-BPS flux solutions in M-theory. II. Global solutions asymptotic to AdS7 × S4, J. High Energy Phys. 2008 (2008), no. 12, 044, 21 pages, arXiv:0810.4647. [18] D’Hoker E., Estes J., Gutperle M., Krym D., Janus solutions in M-theory, J. High Energy Phys. 2009 (2009), no. 6, 018, 17 pages, arXiv:0904.3313. [19] D’Hoker E., Estes J., Gutperle M., Krym D., Sorba P., Half-BPS supergravity solutions and superalgebras, J. High Energy Phys. 2008 (2008), no. 12, 047, 72 pages, arXiv:0810.1484. [20] D’Hoker E., Freedman D.Z., Supersymmetric gauge theories and the AdS/CFT correspondence, hep-th/0201253. [21] D’Hoker E., Freedman D.Z., Jackiw R., SO(2, 1)-invariant quantization of the Liouville theory, Phys. Rev. D 28 (1983), 2583–2598. [22] D’Hoker E., Jackiw R., Liouville field theory, Phys. Rev. D 26 (1982), 3517–3542. [23] D’Hoker E., Vinet L., Supersymmetry of the Pauli equation in the presence of a magnetic monopole, Phys. Lett. B 137 (1984), 72–76. [24] D’Hoker E., Vinet L., Constants of motion for a spin-1/2 particle in the field of a dyon, Phys. Rev. Lett. 55 (1985), 1043–1046. [25] D’Hoker E., Vinet L., Spectrum (super-) symmetries of particles in a Coulomb potential, Nuclear Phys. B 260 (1985), 79–102. [26] Duff M.J. (Editor), The world in eleven dimensions: supergravity, supermembranes and M-theory, Studies in High Energy Physics Cosmology and Gravitation, IOP Publishing, Ltd., Bristol, 1999. [27] Estes J., Feldman R., Krym D., Exact half-BPS flux solutions in M-theory with D(2, 1 : c′ : 0)2 symmetry: local solutions, Phys. Rev. D 87 (2013), 046008, 19 pages, arXiv:1209.1845. [28] Figueroa-O’Farrill J., Papadopoulos G., Maximally supersymmetric solutions of ten- and eleven-dimensional supergravities, J. High Energy Phys. 2003 (2003), no. 3, 048, 25 pages, hep-th/0211089. [29] Freedman D.Z., Van Proeyen A., Supergravity, Cambridge University Press, Cambridge, 2012. [30] Gaiotto D., Witten E., S-duality of boundary conditions in N = 4 super Yang–Mills theory, Adv. Theor. Math. Phys. 13 (2009), 721–896, arXiv:0807.3720. [31] Gaiotto D., Witten E., Supersymmetric boundary conditions in N = 4 super Yang–Mills theory, J. Stat. Phys. 135 (2009), 789–855, arXiv:0804.2902. [32] Gaiotto D., Witten E., Janus configurations, Chern–Simons couplings, and the θ-angle in N = 4 super Yang–Mills theory, J. High Energy Phys. 2010 (2010), no. 6, 097, 58 pages, arXiv:0804.2907. [33] Gauntlett J.P., Intersecting branes, in Dualities in Gauge and String Theories (Seoul/Sokcho, 1997), World Sci. Publ., River Edge, NJ, 1998, 146–193, hep-th/9705011. [34] Gauntlett J.P., Kastor D.A., Traschen J., Overlapping branes in M -theory, Nuclear Phys. B 478 (1996), 544–560, hep-th/9604179. [35] Gauntlett J.P., Myers R.C., Townsend P.K., Supersymmetry of rotating branes, Phys. Rev. D 59 (1999), 025001, 12 pages, hep-th/9809065. [36] Gauntlett J.P., Pakis S., The geometry of D = 11 Killing spinors, J. High Energy Phys. 2003 (2003), no. 4, 039, 33 pages, hep-th/0212008. [37] Gomis J., Passerini F., Holographic Wilson loops, J. High Energy Phys. 2006 (2006), no. 6, 074, 30 pages, hep-th/0604007. [38] Gran U., Gutowski J., Papadopoulos G., M-theory backgrounds with 30 Killing spinors are maximally supersymmetric, J. High Energy Phys. 2010 (2010), no. 3, 112, 38 pages, arXiv:1001.1103. [39] Gustavsson A., Algebraic structures on parallel M2 branes, Nuclear Phys. B 811 (2009), 66–76, arXiv:0709.1260. [40] Hull C., Holonomy and symmetry in M-theory, hep-th/0305039. http://dx.doi.org/10.1088/1126-6708/2007/06/022 http://arxiv.org/abs/0705.0024 http://dx.doi.org/10.1088/1126-6708/2007/06/063 http://arxiv.org/abs/0705.1004 http://dx.doi.org/10.1088/1126-6708/2008/08/028 http://arxiv.org/abs/0806.0605 http://dx.doi.org/10.1088/1126-6708/2008/12/044 http://arxiv.org/abs/0810.4647 http://dx.doi.org/10.1088/1126-6708/2009/06/018 http://arxiv.org/abs/0904.3313 http://dx.doi.org/10.1088/1126-6708/2008/12/047 http://arxiv.org/abs/0810.1484 http://arxiv.org/abs/hep-th/0201253 http://dx.doi.org/10.1103/PhysRevD.28.2583 http://dx.doi.org/10.1103/PhysRevD.26.3517 http://dx.doi.org/10.1016/0370-2693(84)91108-0 http://dx.doi.org/10.1016/0370-2693(84)91108-0 http://dx.doi.org/10.1103/PhysRevLett.55.1043 http://dx.doi.org/10.1016/0550-3213(85)90311-6 http://dx.doi.org/10.1103/PhysRevD.87.046008 http://arxiv.org/abs/1209.1845 http://dx.doi.org/10.1088/1126-6708/2003/03/048 http://arxiv.org/abs/hep-th/0211089 http://dx.doi.org/10.1017/CBO9781139026833 http://dx.doi.org/10.4310/ATMP.2009.v13.n3.a5 http://dx.doi.org/10.4310/ATMP.2009.v13.n3.a5 http://arxiv.org/abs/0807.3720 http://dx.doi.org/10.1007/s10955-009-9687-3 http://dx.doi.org/10.1007/s10955-009-9687-3 http://arxiv.org/abs/0804.2902 http://dx.doi.org/10.1007/JHEP06(2010)097 http://arxiv.org/abs/0804.2907 http://arxiv.org/abs/hep-th/9705011 http://dx.doi.org/10.1016/0550-3213(96)00423-3 http://arxiv.org/abs/hep-th/9604179 http://dx.doi.org/10.1103/PhysRevD.59.025001 http://arxiv.org/abs/hep-th/9809065 http://dx.doi.org/10.1088/1126-6708/2003/04/039 http://arxiv.org/abs/hep-th/0212008 http://dx.doi.org/10.1088/1126-6708/2006/08/074 http://arxiv.org/abs/hep-th/0604007 http://dx.doi.org/10.1007/JHEP03(2010)112 http://arxiv.org/abs/1001.1103 http://dx.doi.org/10.1016/j.nuclphysb.2008.11.014 http://arxiv.org/abs/0709.1260 http://arxiv.org/abs/hep-th/0305039 20 E. D’Hoker [41] Okuda T., Trancanelli D., Spectral curves, emergent geometry, and bubbling solutions for Wilson loops, J. High Energy Phys. 2008 (2008), no. 9, 050, 23 pages, arXiv:0806.4191. [42] Sevrin A., Troost W., Van Proeyen A., Superconformal algebras in two dimensions with N = 4, Phys. Lett. B 208 (1988), 447–450. [43] Smith D.J., Intersecting brane solutions in string and M-theory, Classical Quantum Gravity 20 (2003), R233–R300, hep-th/0210157. [44] Tseytlin A.A., Harmonic superpositions ofM -branes, Nuclear Phys. B 475 (1996), 149–163, hep-th/9604035. [45] Tseytlin A.A., Composite BPS configurations of p-branes in 10 and 11 dimensions, Classical Quantum Gravity 14 (1997), 2085–2105, hep-th/9702163. [46] Witten E., String theory dynamics in various dimensions, Nuclear Phys. B 443 (1995), 85–126, hep-th/9503124. [47] Yamaguchi S., Bubbling geometries for half-BPS Wilson lines, Internat. J. Modern Phys. A 22 (2007), 1353–1374, hep-th/0601089. [48] Youm D., Localized intersecting BPS branes, hep-th/9902208. http://dx.doi.org/10.1088/1126-6708/2008/09/050 http://arxiv.org/abs/0806.4191 http://dx.doi.org/10.1016/0370-2693(88)90645-4 http://dx.doi.org/10.1016/0370-2693(88)90645-4 http://dx.doi.org/10.1088/0264-9381/20/9/203 http://arxiv.org/abs/hep-th/0210157 http://dx.doi.org/10.1016/0550-3213(96)00328-8 http://arxiv.org/abs/hep-th/9604035 http://dx.doi.org/10.1088/0264-9381/14/8/009 http://dx.doi.org/10.1088/0264-9381/14/8/009 http://arxiv.org/abs/hep-th/9702163 http://dx.doi.org/10.1016/0550-3213(95)00158-O http://arxiv.org/abs/hep-th/9503124 http://dx.doi.org/10.1142/S0217751X07035070 http://arxiv.org/abs/hep-th/0601089 http://arxiv.org/abs/hep-th/9902208 1 Introduction 2 M-theory synopsis 2.1 M2 and M5 branes 2.2 Near-horizon geometry 3 Geometry and symmetries of intersecting branes 3.1 Intersecting branes with residual supersymmetry 3.2 Symmetries of M2 and M5 and their near-horizon geometry 3.3 Symmetries of half-BPS intersecting branes 4 BPS solutions in 11-dimensional supergravity 4.1 11-dimensional supergravity 4.2 Supersymmetric solutions 4.3 Integrability and the BPS equations 5 Solving the Half-BPS equations 5.1 The Ansatz for space-time and fields 5.2 Reduced equations 5.3 Regularity conditions 5.4 Differential equations 5.5 Flux field solutions 6 Map to an integrable system 6.1 Associated integrable system 7 Role of the superalgebra D(2,1;) D(2,1;) 7.1 The Lie superalgebra D(2,1;) 7.2 Invariance of the solutions under D(2,1;,0) D(2,1;,0) 8 Families and moduli spaces of exact solutions 8.1 Global solutions with >0 8.1.1 String and semi-infinite M2 branes 8.2 Global solutions with <0 8.2.1 Self-dual strings and Young tableaux 9 Summary and open problems References