Skein Modules from Skew Howe Duality and Affine Extensions

We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
1. Verfasser: Queffelec, H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147018
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147018
record_format dspace
spelling Queffelec, H.
2019-02-12T20:58:58Z
2019-02-12T20:58:58Z
2015
Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81R50; 17B37; 17B67; 57M25; 57M27
DOI:10.3842/SIGMA.2015.030
https://nasplib.isofts.kiev.ua/handle/123456789/147018
We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular Uq(sln) representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.
This paper is a contribution to the Special Issue on New Directions in Lie Theory. The full collection is available at http://www.emis.de/journals/SIGMA/LieTheory2014.html. I would like to thank my advisors Christian Blanchet and Catharina Stroppel for their constant support, and Aaron Lauda for his great help. Many thanks also to David Rose, Peng Shan, Pedro Vaz and Emmanuel Wagner for all useful discussions we had, Marco Mackaay for pointing out the interest of the af fine Hecke algebra, and especially to Mathieu Mansuy for teaching me everything I know about af fine algebras. I also wish to acknowledge the great help of the anonymous referees.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Skein Modules from Skew Howe Duality and Affine Extensions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Skein Modules from Skew Howe Duality and Affine Extensions
spellingShingle Skein Modules from Skew Howe Duality and Affine Extensions
Queffelec, H.
title_short Skein Modules from Skew Howe Duality and Affine Extensions
title_full Skein Modules from Skew Howe Duality and Affine Extensions
title_fullStr Skein Modules from Skew Howe Duality and Affine Extensions
title_full_unstemmed Skein Modules from Skew Howe Duality and Affine Extensions
title_sort skein modules from skew howe duality and affine extensions
author Queffelec, H.
author_facet Queffelec, H.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that we can release the rigidity of the skew Howe duality process for sln knot invariants by rescaling the quantum Weyl group action, and recover skein modules for web-tangles. This skew Howe duality phenomenon can be extended to the affine slm case, corresponding to looking at tangles embedded in a solid torus. We investigate the relations between the invariants constructed by evaluation representations (and affinization of them) and usual skein modules, and give tools for interpretations of annular skein modules as sub-algebras of intertwiners for particular Uq(sln) representations. The categorification proposed in a joint work with A. Lauda and D. Rose also admits a direct extension in the affine case.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147018
citation_txt Skein Modules from Skew Howe Duality and Affine Extensions / H. Queffelec // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT queffelech skeinmodulesfromskewhowedualityandaffineextensions
first_indexed 2025-12-07T17:02:19Z
last_indexed 2025-12-07T17:02:19Z
_version_ 1850869745840029696