Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds

In this article we develop some elementary aspects of a theory of symmetry in sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes of sub-Lorentzian contact 3 manifolds. Next we characterize vector fields which generate isometric and conformal symmetries in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Grochowski, M., Warhurst, B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147019
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds / M. Grochowski, B. Warhurst // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147019
record_format dspace
spelling Grochowski, M.
Warhurst, B.
2019-02-12T20:59:53Z
2019-02-12T20:59:53Z
2015
Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds / M. Grochowski, B. Warhurst // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 25 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53B30; 53A55; 34C14
DOI:10.3842/SIGMA.2015.031
https://nasplib.isofts.kiev.ua/handle/123456789/147019
In this article we develop some elementary aspects of a theory of symmetry in sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes of sub-Lorentzian contact 3 manifolds. Next we characterize vector fields which generate isometric and conformal symmetries in general sub-Lorentzian manifolds. We then focus attention back to the case where the underlying manifold is a contact 3 manifold and more specifically when the manifold is also a Lie group and the structure is left-invariant.
We would like to thank the referees for their thoughtful comments and careful reading of the paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
spellingShingle Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
Grochowski, M.
Warhurst, B.
title_short Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
title_full Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
title_fullStr Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
title_full_unstemmed Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds
title_sort invariants and infinitesimal transformations for contact sub-lorentzian structures on 3-dimensional manifolds
author Grochowski, M.
Warhurst, B.
author_facet Grochowski, M.
Warhurst, B.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this article we develop some elementary aspects of a theory of symmetry in sub-Lorentzian geometry. First of all we construct invariants characterizing isometric classes of sub-Lorentzian contact 3 manifolds. Next we characterize vector fields which generate isometric and conformal symmetries in general sub-Lorentzian manifolds. We then focus attention back to the case where the underlying manifold is a contact 3 manifold and more specifically when the manifold is also a Lie group and the structure is left-invariant.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147019
citation_txt Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds / M. Grochowski, B. Warhurst // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT grochowskim invariantsandinfinitesimaltransformationsforcontactsublorentzianstructureson3dimensionalmanifolds
AT warhurstb invariantsandinfinitesimaltransformationsforcontactsublorentzianstructureson3dimensionalmanifolds
first_indexed 2025-12-07T21:17:31Z
last_indexed 2025-12-07T21:17:31Z
_version_ 1850885801027567616