The Combinatorics of Associated Laguerre Polynomials

The explicit double sum for the associated Laguerre polynomials is derived combinatorially. The moments are described using certain statistics on permutations and permutation tableaux. Another derivation of the double sum is provided using only the moment generating function.

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2015
Main Authors: Kim, J.S., Stanton, D.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147020
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Combinatorics of Associated Laguerre Polynomials / J.S. Kim, D. Stanton // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147020
record_format dspace
spelling Kim, J.S.
Stanton, D.
2019-02-12T21:01:04Z
2019-02-12T21:01:04Z
2015
The Combinatorics of Associated Laguerre Polynomials / J.S. Kim, D. Stanton // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 05E35; 05A15
DOI:10.3842/SIGMA.2015.039
https://nasplib.isofts.kiev.ua/handle/123456789/147020
The explicit double sum for the associated Laguerre polynomials is derived combinatorially. The moments are described using certain statistics on permutations and permutation tableaux. Another derivation of the double sum is provided using only the moment generating function.
This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. The first author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF2013R1A1A2061006). The second author was supported by NSF grant DMS-1148634.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Combinatorics of Associated Laguerre Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Combinatorics of Associated Laguerre Polynomials
spellingShingle The Combinatorics of Associated Laguerre Polynomials
Kim, J.S.
Stanton, D.
title_short The Combinatorics of Associated Laguerre Polynomials
title_full The Combinatorics of Associated Laguerre Polynomials
title_fullStr The Combinatorics of Associated Laguerre Polynomials
title_full_unstemmed The Combinatorics of Associated Laguerre Polynomials
title_sort combinatorics of associated laguerre polynomials
author Kim, J.S.
Stanton, D.
author_facet Kim, J.S.
Stanton, D.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The explicit double sum for the associated Laguerre polynomials is derived combinatorially. The moments are described using certain statistics on permutations and permutation tableaux. Another derivation of the double sum is provided using only the moment generating function.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147020
citation_txt The Combinatorics of Associated Laguerre Polynomials / J.S. Kim, D. Stanton // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT kimjs thecombinatoricsofassociatedlaguerrepolynomials
AT stantond thecombinatoricsofassociatedlaguerrepolynomials
AT kimjs combinatoricsofassociatedlaguerrepolynomials
AT stantond combinatoricsofassociatedlaguerrepolynomials
first_indexed 2025-11-28T18:44:14Z
last_indexed 2025-11-28T18:44:14Z
_version_ 1850854017025966080