Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation
The surface topography of W bulk prepared by powder sintering (20 μm thickness) and W coatings deposited by cathodic arc evaporation and by argon ion sputtering was studied under the influence of low-energy hydrogen (deuterium) and helium plasma at room temperature. The surface modifications induc...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2018 |
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147033 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Comparison of blistering of w bulk and coatings under H₂, D₂ and He plasma irradiation / A.V. Nikitin, A.S. Kuprin, G.D. Tolstolutskaya, R.L. Vasilenko, V.D. Ovcharenko, V.N. Voyevodin // Вопросы атомной науки и техники. — 2018. — № 2. — С. 29-34. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147033 |
|---|---|
| record_format |
dspace |
| spelling |
Nikitin, A.V. Kuprin, A.S. Tolstolutskaya, G.D. Vasilenko, R.L. Ovcharenko, V.D. Voyevodin, V.N. 2019-02-13T11:44:12Z 2019-02-13T11:44:12Z 2018 Comparison of blistering of w bulk and coatings under H₂, D₂ and He plasma irradiation / A.V. Nikitin, A.S. Kuprin, G.D. Tolstolutskaya, R.L. Vasilenko, V.D. Ovcharenko, V.N. Voyevodin // Вопросы атомной науки и техники. — 2018. — № 2. — С. 29-34. — Бібліогр.: 17 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/147033 669.017:539.16 The surface topography of W bulk prepared by powder sintering (20 μm thickness) and W coatings deposited by cathodic arc evaporation and by argon ion sputtering was studied under the influence of low-energy hydrogen (deuterium) and helium plasma at room temperature. The surface modifications induced by the plasma irradiation were studied by scanning electron microscopy. It was observed formation of blisters and sputtering. After helium and deuterium plasma irradiation, numerous blisters were observed on the surface of W foils samples and coatings deposited by argon ion sputtering. The surface of W coatings deposited by cathodic arc evaporation was undergone only sputtering process under the same irradiation conditions. Вивчено зміну топографії поверхні масивного вольфраму, отриманого методом порошкового спікання (товщиною 20 мкм), і W-покриттів осадженими вакуумно-дуговим методом та іонним розпиленням під впливом низькоенергетичної водневої (дейтерієвої) і гелієвої плазми при кімнатній температурі. Поверхневі модифікації, індуковані плазмовим опроміненням, вивчалися за допомогою сканувальної електронної мікроскопії. Після опромінення гелієвою і дейтерієвою плазмою на поверхні зразків фольги W і покриттів, нанесених іонним розпиленням, спостерігалися численні блістери. Поверхня W-покриттів, осаджених вакуумно-дуговим способом, піддавалася тільки розпорошенню при тих же умовах опромінення. Изучены изменения топографии поверхности массивного вольфрама, полученного методом порошкового спекания (толщиной 20 мкм), и W-покрытий осажденными вакуумно-дуговым методом и ионным распылением под воздействием низкоэнергетической водородной (дейтериевой) и гелиевой плазмы при комнатной температуре. Поверхностные модификации, индуцированные плазменным облучением, изучались с помощью сканирующей электронной микроскопии. После облучения гелиевой и дейтериевой плазмой на поверхности образцов фольги W и покрытий, нанесенных ионным распылением, наблюдались многочисленные блистеры. Поверхность W-покрытий, осажденных вакуумно-дуговым способом, подвергалась только распылению при тех же условиях облучения. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Физика радиационных повреждений и явлений в твердых телах Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation Порівняння блістерінга при опроміненні масивного вольфраму і W-покриттів H₂, D₂ та He-плазмою Сравнение блистеринга при облучении массивного вольфрама и W-покрытий H₂, D₂ и He-плазмой Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation |
| spellingShingle |
Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation Nikitin, A.V. Kuprin, A.S. Tolstolutskaya, G.D. Vasilenko, R.L. Ovcharenko, V.D. Voyevodin, V.N. Физика радиационных повреждений и явлений в твердых телах |
| title_short |
Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation |
| title_full |
Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation |
| title_fullStr |
Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation |
| title_full_unstemmed |
Comparison of blistering of W bulk and coatings under H₂, D₂ and He plasma irradiation |
| title_sort |
comparison of blistering of w bulk and coatings under h₂, d₂ and he plasma irradiation |
| author |
Nikitin, A.V. Kuprin, A.S. Tolstolutskaya, G.D. Vasilenko, R.L. Ovcharenko, V.D. Voyevodin, V.N. |
| author_facet |
Nikitin, A.V. Kuprin, A.S. Tolstolutskaya, G.D. Vasilenko, R.L. Ovcharenko, V.D. Voyevodin, V.N. |
| topic |
Физика радиационных повреждений и явлений в твердых телах |
| topic_facet |
Физика радиационных повреждений и явлений в твердых телах |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Порівняння блістерінга при опроміненні масивного вольфраму і W-покриттів H₂, D₂ та He-плазмою Сравнение блистеринга при облучении массивного вольфрама и W-покрытий H₂, D₂ и He-плазмой |
| description |
The surface topography of W bulk prepared by powder sintering (20 μm thickness) and W coatings deposited by
cathodic arc evaporation and by argon ion sputtering was studied under the influence of low-energy hydrogen
(deuterium) and helium plasma at room temperature. The surface modifications induced by the plasma irradiation
were studied by scanning electron microscopy. It was observed formation of blisters and sputtering. After helium
and deuterium plasma irradiation, numerous blisters were observed on the surface of W foils samples and coatings
deposited by argon ion sputtering. The surface of W coatings deposited by cathodic arc evaporation was undergone
only sputtering process under the same irradiation conditions.
Вивчено зміну топографії поверхні масивного вольфраму, отриманого методом порошкового спікання
(товщиною 20 мкм), і W-покриттів осадженими вакуумно-дуговим методом та іонним розпиленням під
впливом низькоенергетичної водневої (дейтерієвої) і гелієвої плазми при кімнатній температурі. Поверхневі
модифікації, індуковані плазмовим опроміненням, вивчалися за допомогою сканувальної електронної
мікроскопії. Після опромінення гелієвою і дейтерієвою плазмою на поверхні зразків фольги W і покриттів,
нанесених іонним розпиленням, спостерігалися численні блістери. Поверхня W-покриттів, осаджених
вакуумно-дуговим способом, піддавалася тільки розпорошенню при тих же умовах опромінення.
Изучены изменения топографии поверхности массивного вольфрама, полученного методом порошкового
спекания (толщиной 20 мкм), и W-покрытий осажденными вакуумно-дуговым методом и ионным
распылением под воздействием низкоэнергетической водородной (дейтериевой) и гелиевой плазмы при
комнатной температуре. Поверхностные модификации, индуцированные плазменным облучением,
изучались с помощью сканирующей электронной микроскопии. После облучения гелиевой и дейтериевой
плазмой на поверхности образцов фольги W и покрытий, нанесенных ионным распылением, наблюдались
многочисленные блистеры. Поверхность W-покрытий, осажденных вакуумно-дуговым способом,
подвергалась только распылению при тех же условиях облучения.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147033 |
| citation_txt |
Comparison of blistering of w bulk and coatings under H₂, D₂ and He plasma irradiation / A.V. Nikitin, A.S. Kuprin, G.D. Tolstolutskaya, R.L. Vasilenko, V.D. Ovcharenko, V.N. Voyevodin // Вопросы атомной науки и техники. — 2018. — № 2. — С. 29-34. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT nikitinav comparisonofblisteringofwbulkandcoatingsunderh2d2andheplasmairradiation AT kuprinas comparisonofblisteringofwbulkandcoatingsunderh2d2andheplasmairradiation AT tolstolutskayagd comparisonofblisteringofwbulkandcoatingsunderh2d2andheplasmairradiation AT vasilenkorl comparisonofblisteringofwbulkandcoatingsunderh2d2andheplasmairradiation AT ovcharenkovd comparisonofblisteringofwbulkandcoatingsunderh2d2andheplasmairradiation AT voyevodinvn comparisonofblisteringofwbulkandcoatingsunderh2d2andheplasmairradiation AT nikitinav porívnânnâblísteríngapriopromínennímasivnogovolʹframuíwpokrittívh2d2taheplazmoû AT kuprinas porívnânnâblísteríngapriopromínennímasivnogovolʹframuíwpokrittívh2d2taheplazmoû AT tolstolutskayagd porívnânnâblísteríngapriopromínennímasivnogovolʹframuíwpokrittívh2d2taheplazmoû AT vasilenkorl porívnânnâblísteríngapriopromínennímasivnogovolʹframuíwpokrittívh2d2taheplazmoû AT ovcharenkovd porívnânnâblísteríngapriopromínennímasivnogovolʹframuíwpokrittívh2d2taheplazmoû AT voyevodinvn porívnânnâblísteríngapriopromínennímasivnogovolʹframuíwpokrittívh2d2taheplazmoû AT nikitinav sravnenieblisteringaprioblučeniimassivnogovolʹframaiwpokrytiih2d2iheplazmoi AT kuprinas sravnenieblisteringaprioblučeniimassivnogovolʹframaiwpokrytiih2d2iheplazmoi AT tolstolutskayagd sravnenieblisteringaprioblučeniimassivnogovolʹframaiwpokrytiih2d2iheplazmoi AT vasilenkorl sravnenieblisteringaprioblučeniimassivnogovolʹframaiwpokrytiih2d2iheplazmoi AT ovcharenkovd sravnenieblisteringaprioblučeniimassivnogovolʹframaiwpokrytiih2d2iheplazmoi AT voyevodinvn sravnenieblisteringaprioblučeniimassivnogovolʹframaiwpokrytiih2d2iheplazmoi |
| first_indexed |
2025-11-25T23:08:41Z |
| last_indexed |
2025-11-25T23:08:41Z |
| _version_ |
1850578828595822592 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №2(114), p. 29-34.
UDC 669.017:539.16
COMPARISON OF BLISTERING OF W BULK AND COATINGS UNDER
H2, D2 AND He PLASMA IRRADIATION
A.V. Nikitin
1
, A.S. Kuprin
1
, G.D. Tolstolutskaya
1
, R.L. Vasilenko
1
,
V.D. Ovcharenko
1
, V.N. Voyevodin
1,2
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
V.N. Karazin Kharkiv National University, Kharkov, Ukraine
The surface topography of W bulk prepared by powder sintering (20 μm thickness) and W coatings deposited by
cathodic arc evaporation and by argon ion sputtering was studied under the influence of low-energy hydrogen
(deuterium) and helium plasma at room temperature. The surface modifications induced by the plasma irradiation
were studied by scanning electron microscopy. It was observed formation of blisters and sputtering. After helium
and deuterium plasma irradiation, numerous blisters were observed on the surface of W foils samples and coatings
deposited by argon ion sputtering. The surface of W coatings deposited by cathodic arc evaporation was undergone
only sputtering process under the same irradiation conditions.
INTRODUCTION
Tungsten (W) will be used as a plasma-facing
material (PFM) in the divertor region in ITER, and its
use in future fusion devices is also very likely, due to its
favorable properties including low hydrogen
permeability, low sputtering erosion yield, high thermal
conductivity and no chemical reaction with hydrogen
[1–4]. The major issue associated with the presently
available tungsten grades, in the context of structural
applications, is their brittleness at low temperatures [5]
which is worsened by irradiation [6]. Surface
modifications might be problematic, because they can
lead to degradation of heat conductivity. These
modifications may further enhance erosion, which could
be problematic because tungsten cannot be tolerated in
the core plasma. An obvious way to solve this problem
is to alloy W with other ductile refractory metals which
also present low neutron activation and recently
refractory W composites were pointed as a promising
alternative to pure W [7]. Structural engineering is in
recent years the main method for obtaining coating
materials with unique structural states and functional
properties.
In many cases increasing of various purposes
products functional characteristics is achieved by
coating of their surfaces. One of the most promising
methods of coatings deposition is vacuum arc method
that provides the formation of a wide range of coatings
with high adhesion, anti-corrosion, wear-resistant and
other properties.
In our previous paper [8] the surface topography of
W, Ta, and W-Ta coatings and deuterium retention
under the influence of particles of low-energy deuterium
plasma was studied. The coatings deposited by argon
ion sputtering of W and Ta targets using the gas plasma
source employed in this work are free from oxygen
enrichment. It was observed formation of blisters as
dome and burst or delaminated structures. The W-Ta
coating shows improved characteristics: smaller sizes
and densities of blisters and a significantly lower
thickness of the delaminated layer.
In the actual nuclear fusion devices W will
simultaneously or sequentially be irradiated by various
ions with high flux such as hydrogen isotopes, helium
(He), neutron and other trace impurities [9], which must
lead to diffusion and retention of deuterium (hydrogen
isotopes) and helium in materials and retention-induced
blistering at the surface of PFMs, and result in the
exfoliation and melting of surface of PFMs to degrading
the stability of fusion reactor [10].
Recent studies indicate that the microstructure of
tungsten play a significant role in hydrogen isotope and
He irradiation effect [11].
The goal of this paper is the study of the surface
topography of bulk tungsten and two types of coatings
that are deposited by the vacuum arc method or by the
argon ion sputtering and a comparison of their surface
microstructure changes under the influence of particles
of low-energy hydrogen (deuterium) and helium plasma.
1. EXPERIMENTAL PROCEDURE
In this paper, three types of tungsten samples were
investigated: bulk tungsten foil (BF) with 20 μm
thickness prepared by powder sintering, tungsten
coatings deposited by cathodic arc evaporation (CAE)
and tungsten coatings deposited by argon ion sputtering
(AIS).
A set of tungsten coatings was formed using
unfiltered CAE in a “Bulat-6” system equipped with a
W (99.9%) cathode of 60 mm diameter. The substrate-
cathode distance was about 150 mm. A vacuum-arc
plasma source with magnetic stabilization of a cathode
spot was used. The arc current was 140 A. The chamber
was evacuated to a pressure of 2∙10
−3
Pa. Coatings were
deposited on the substrates (10×20×1.5 mm) of stainless
steel 18Cr10NiTi at a negative bias potential of -50 V
without rotation. The substrate temperature during
deposition did not exceed 500 °C. The coating
deposition rate was of ~ 6 m/h.
The conditions for obtaining tungsten coatings on
stainless steel 18Cr10NiTi by AIS are described in
detail in [12].
Thickness of all investigated coatings was 5…6 μm.
The disk-shaped specimens (BF, CAE, and AIS)
have been irradiated with hydrogen, deuterium, and
helium ions using a glow gas-discharge plasma at
1000 V, producing an ion flux of 10
19
D
+
(H
+
)/(m
2
·s).
The design and principle of operation of the gaseous
plasma source used for irradiation of the samples is
described in detail in [13]. The specimen temperature
was measured by the thermocouple and was
(300±2.5) K during irradiation. The central portion of
the specimen was irradiated through an aperture,
providing an easily-observed boundary between
irradiated and unirradiated regions.
Investigations of surface microstructure before and
after irradiation were performed using scanning electron
microscope JEOL JSM-7001F. Chemical composition
of the tungsten coatings was determined by energy
dispersive X-ray spectroscopy – EDS.
2. RESULTS AND DISCUSSION
Fig. 1 shows an SEM image of plasma-induced
surface changes in tungsten foil (20 μm thickness)
bombarded at 300 K with 0.5 keV/H
+
, 1 keV He
+
and
simultaneously H2
+
+He
+
with a dose for each type of
particles equal to 1·10
24
ion/m
2
.
a
b
c
Fig. 1. SEM image of the tungsten foil bombarded with
H2
+
(a), He
+
(b) and simultaneously H2
+
+He
+
(c) at
300 K. In the insets the structure of individual blisters
Hydrogen exposure leads to development the blisters.
The comparison of the shape of blisters shows that
blisters at tungsten foil are domes. Blisters size and
number in this case are 2 m and 9·10
10
m
-2
,
respectively. The blisters are located mainly along the
rolling direction.
Irradiation with helium leads to development the
blisters that in average larger and higher than those at
H2 exposure. Blisters have a contrast that characteristic
for blisters developing in thin films and the bottom of
cracked blister has a porous structure (see Fig. 1,b,
inset). Blisters of large irregular shapes are also formed.
Likely they are grown due to the coalescence of several
dome shaped blisters.
After helium + hydrogen exposure blisters are
domes and elongated along the rolling direction (see
Fig. 1, c). The density and size of the blisters are in the
middle between those for irradiation only by hydrogen
or helium plasma. A feature of joint irradiation is the
formation of ridges along the rolling direction. In the
valleys of these ridges blisters have a contrast which is
characteristic for helium blisters. Most of these blisters
are ruptured.
In our previous paper we reported about plasma-
induced surface changes in W coatings deposited by
argon ion sputtering [8]. W coatings (AIS) have a
columnar structure (Fig. 2) with a strong axial texture
(110) and grain size of 29 nm [12].
Fig. 2. SEM image of cross-section of W coating
deposited by sputtering (AIS)
Fig. 3 shows a SEM image of surface of W coating
(AIS) with a columnar structure bombarded at 300 K
with 1 keV D2
+
(0.5 keV/D) to 1·10
24
D2
+
/m
2
.
Fig. 3. SEM image of the tungsten coating (AIS)
bombarded with 1 keV D2
+
to 1∙10
24
D2
+
/m
2
at 300 K.
Ruptured blister (inset)
The mean size of the blisters ~ 3 m and scattered
from 0.5 to 10 m. The blister number is 1.8·10
10
m
-2
.
Almost all blisters at the coating are asymmetric in
shape. The average size of blisters is comparable for the
tungsten foil and coating, but in the coating the density
of blisters is more than four times less.
In addition, the ruptured blisters were found on the
surfaces of the W films as seen in Fig. 3 (inset), which
implies that during deuterium ions irradiation some big
blisters could burst or exfoliate when the internal
pressure exceeded a critical limit. On account of some
caps of blisters removing after its bursting or exfoliating,
the sub-surfaces under the ruptured blisters are clearly
visible as shown in Fig. 3 (inset). The surface of the
blister caps and the morphology of the sub-surface are
characterized by the columnar structure, which retains
the morphology of the films before deuterium ions
irradiation.
Fig. 4 shows SEM images of surface morphology of
initial W coatings deposited by CAE and EDS X-ray
spectrums of surface.
a
b
c
Fig. 4. SEM image of initial surface of W coatings
(CAE) with droplets (а) and EDS X-ray spectrums
of part of surface (b) and droplets (c)
On the tungsten coatings surface macroparticles and
craters form (Fig. 4,a). Their presence on the surface is
due to the generation of droplets of cathode material in
the process of cathodic arc evaporation. The amount of
macroparticles on the coating surface is small, which is
probably due to a sufficiently low arc discharge current
~ 140 A and a high melting point of tungsten.
The EDS X-ray analysis showed that the coating and
droplets consist almost 100% of tungsten. The
concentration of oxygen and carbon contaminations in
coating is below the detection limit of the EDS method.
Fig. 5 shows a view of fracture of the tungsten
coating deposited by CAE. The interface between the
coating and substrate is indicated by the dashed
horizontal line. The coating thickness is about 5 m.
Within the W coating we can see the grains with
dimensions in the m range and the absence of a
pronounced columnar structure.
Fig. 5. Cross-section images of W film (CAE) deposited
on the substrates of stainless steel 18Cr10NiTi
Fig. 6 shows SEM images of morphology of W
coating (CAE) before irradiation. As seen in Fig. 6, the
morphology of the W coating shows a similar “nano-
ridge” structure, which is the typical morphology of
refractory metal films deposited at the relatively low
temperatures [14].
Fig. 6. SEM images of morphology of W coating (CAE)
before irradiation
Fig. 7 shows morphology of W coating (CAE) after
irradiation at 300 K with 1 keV H2
+
to 1·10
24
H2
+
/m
2
and
with simultaneously D
+
+He
+
to 1·10
24
ion/m
2
.
a
b
Fig. 7. SEM images of morphology of W coating (CAE)
after irradiation at 300 K with 1 keV H2
+
to 1∙10
24
H2
+
/m
2
(a) and with simultaneously
D
+
+He
+
to 1∙10
24
ion/m
2
(b)
As can be seen from Fig. 7 irradiation of tungsten
coatings (CAE) did not lead to the formation of blisters.
Only the process of physical sputtering is observed.
Sputtering coefficients are 1.14·10
-2
at./ion for hydrogen
irradiation. Obtained sputtering coefficients for tungsten
coatings (CAE) are lower than for the W coatings (AIS)
obtained in the previous work ~ 3.8·10
-2
[15].
In ref. [16] it is noted that there are several reasons
to investigate H retention in W films. Firstly, up to now,
tungsten coatings were used as the first-wall material in
ASDEX Upgrade and JET. Secondly, in future fusion
devices W will inevitably be sputtered and re-deposited
on nearby surfaces and we can assume that the structure
of re-deposited W layers in fusion devices is similar to
W films produced by magnetron sputtering. And finally,
W films allow the investigation of thin W layers which
are thinner than layers that can be produced from bulk
material.
Fig. 8 shows a SEM image the structure of re-
deposited W layers on W coating which was irradiated
at 300 K simultaneously D
+
+He
+
.
As suggested in [17] and shown in present paper the
formation of a re-deposited W layers leads to increased
erosion of the surface area of the coating, the formation
of the strongly ruptured layers.
Fig. 8. SEM images of W coating bombarded with
simultaneously 1 keV H
+
+He
+
to 1∙10
24
D2
+
/m
2
at 300 K
In ref. [14], the W films with the thickness of 10 μm
and grain size below 100 nm by magnetron sputtering
and W bulk prepared by powder sintering and warm
rolling were exposed to He
+
ions with the energy of
60 keV to fluence of 1.0·10
22
m
−2
at room temperature.
After irradiation, the blisters were observed on both
samples, some of which burst in various degrees. The
different behavior of blistering on both samples shows
clearly by SEM. For instance, the density and the
average size of the blisters on the W bulk are larger than
on the W film. In addition, the difference in
morphologies of sub-surface under ruptured blisters
implies that the different behavior of blistering on both
samples. It is speculated that GBs in nanostructured
material play a dominant role in the blistering after He
irradiation.
The reasons for which no blistering is observed in
the W coatings deposited by cathodic arc evaporation in
the investigated range of doses and at an irradiation
temperature of 300 K can be several. Firstly, this is a
clear difference in the structure of coatings obtained by
CAE and AIS, for CAE coatings columnar structure is
absent. Secondly, these coatings can differ greatly in the
level of internal stresses, which can also influence on
the formation of blisters.
Thus, further investigation is needed to understand
the mechanism of suppressing the formation of blisters
in tungsten coatings (CAE).
CONCLUSIONS
The surface topography of W bulk foil and W
coatings that are deposited by the cathodic arc
evaporation and the argon ion sputtering and a
comparison of changes of the surface microstructure
under the influence of particles of low-energy hydrogen
(deuterium) and helium plasma were studied.
It is established formation of blisters on the surface
of tungsten foil (20 μm thickness) bombarded at 300 K
with 0.5 keV/H
+
or 1 keV He
+
and simultaneously
H2
+
+He
+
with a dose for each type of particles equal to
1·10
24
ion/m
2
.
It was found plasma-induced blistering on surface of
W coatings deposited by argon ion sputtering and
having a columnar structure. The average size of blisters
is comparable for the tungsten foil and coating, but in
the coating the density of blisters is more than four
times less.
Irradiation of tungsten coatings produced by the
CAE did not lead to the formation of blisters. Only the
process of physical sputtering is observed. Sputtering
coefficients are 1.14·10
-2
at./ion for hydrogen exposure.
REFERENCES
1. M. Rieth, S.L. Dudarev, S.M. Gonzalez de
Vicente, J. Aktaa, T. Ahlgren, S. Antusch,
D.E.J. Armstrong, M. Balden, N. Baluc, M.F. Barthe,
W.W. Basuki, M. Battabyal, C.S. Becquart,
D. Blagoeva, H. Boldyryeva, J. Brinkmann, M. Celino,
L. Ciupinski, J.B. Correia, A. De Backer, C. Domain,
E. Gaganidze, C. García-Rosales, J. Gibson,
M.R. Gilbert, S. Giusepponi, B. Gludovatz, H. Gre-
uner, K. Heinola, T. Höschen, A. Hoffmann,
N. Holstein, F. Koch, W. Krauss, H. Li, S. Lindig,
J. Linke, C. Linsmeier, P. López-Ruiz, H. Maier,
J. Matejicek, T.P. Mishra, M. Muhammed, A. Muñoz,
M. Muzyk, K. Nordlund, D. Nguyen-Manh, J. Opschoor,
N. Ordás, T. Palacio, G. Pintsuk, R. Pippan, J. Reiser,
J. Riesch, S.G. Roberts, L. Romaner, M. Rosi´nski,
M. Sanchez, W. Schulmeyer, H. Traxler, A. Ureña,
J.G. van der Laan, L. Veleva, S. Wahlberg, M. Walter,
T. Weber, T. Weitkamp, S. Wurster, M.A. Yar,
J.H. You, A. Zivelonghi. Recent progress in research on
tungsten materials for nuclear fusion applications in
Europe // J. Nucl. Mater. 2013, v. 432, p. 482-500.
2. R. Panek, J. Adamek, M. Aftanas, P. Bilkova,
P. Boohm, F. Brochard, P. Cahyna, J. Cavalier,
R. Dejarnac, M. Dimitrova, O. Grover, J. Harrison,
P. Hacek, J. Havlicek, A. Havranek, J. Horacek,
M. Hron, M. Imrisek, F. Janky, A. Kirk, M. Komm,
K. Kovarik, J. Krbec, L. Kripner, T. Markovic,
K. Mitosinkova, J. Mlynar, D. Naydenkova, M. Peterka,
J. Seidl, J. Stoockel, E. Stefanikova, M. Tomes,
J. Urban, P. Vondracek, M. Varavin, J. Varju,
V. Weinzettl, J. Zajac. Status of the COMPASS
tokamak and characterization of the first H-Mode //
Plasma Phys. Control. Fusion. 2016, v. 58, p. 014015.
3. M.J. Simmonds, Y.Q. Wang, J.L. Barton, et al.
Reduced deuterium retention in simultaneously
damaged and annealed tungsten // Journal of Nuclear
Materials. 2017, v. 494, p. 67-71.
4. S. Sakurada, K. Yuyama, Y. Uemura, H. Fujita,
C. Hu, T. Toyama, N. Yoshida, T. Hinoki, S. Kondo,
M. Shimada, D. Buchenauer, T. Chikada, Y. Oya.
Annealing effects on deuterium retention behavior in
damaged tungsten // Nucl. Mater. Energy. 2016, v. 9,
p. 141-144.
5. R.E. Nygren, R. Raffray, D. Whyte,
M.A. Urickson, M. Baldwin, L.L. Snead. Making
tungsten work // J. Nucl. Mater. 2011. v. 417, p. 451-
456.
6. M.V. Korobova, N.V. Avramenko, A.G. Boga-
chev, N.V. Rozhkova, E. Osawa. Nanophase of water in
nano-diamond gel // J. Phys. Chem. C. 2008, v. 111,
p. 7330-7334.
7. I. Smid, M. Akiba, G. Vieider, L. Plooch.
Development of tungsten armor and bonding cooper for
plasma interactive components // J. Nucl. Mater. 1998,
v. 258-263, p. 160-172.
8. G.D. Tolstolutskaya, A.S. Kuprin, V.N. Voye-
vodin, A.V. Nikitin, V.D. Ovcharenko, V.A. Belous,
R.L. Vasilenko, I.E. Kopanets. Blistering of W, Ta and
W-Ta coatings under the influence of particles of low-
energy hydrogen plasma // Problems of Atomic Science
and Technology. 2017, N 5 (111), p. 83-90.
9. V.Kh. Alimov, W.M. Shu, J. Roth, S. Lindig,
M. Balden, K. Isobe, T. Yamanishi. Temperature
dependence of surface topography and deuterium
retention in tungsten exposed to low-energy, high-flux
D plasma // J. Nucl. Mater. 2011, v. 417, p. 572-575.
10. M.R. Gilbert, S.L. Dudarev, S. Zheng,
L.W. Packer, J.Ch. Sublet. An integrated model for
materials in a fusion power plant: transmutation, gas
production, and helium embrittlement under neutron
irradiation // Nucl. Fusion. 2012, v. 52, p. 083019.
11. A. Manhard, K. Schmid, M. Balden, W. Jacob.
Influence of the microstructure on the deuterium
retention in tungsten // J. Nucl. Mater. 2011. v. 415,
p. S632-S635.
12. V.M. Lunyov, A.S. Kuprin, V.D. Ovcharenko,
V.A. Belous, A.N. Morozov, A.V. Ilchenko,
G.N. Tolmachova, E.N. Reshetnyak, R.L. Vasilenko.
Structure and properties of W, Ta, and W-Ta coatings
deposited with the use of a gas-plasma source //
Вопросы атомной науки и техники. Серия «Вакуум,
чистые материалы, сверхпроводники». 2016,
№1(101), с. 140-144.
13. A.V. Nikitin, G.D. Tolstolutskaya, V.V. Ru-
zhytskyi, V.N. Voyevodin, I.E. Kopanets, S.A. Karpov,
R.L. Vasilenko, F.A. Garner. Blister formation on
13Cr2MoNbVB ferritic-martensitic steel exposed to
hydrogen plasma // Journal of Nuclear Materials. 2016,
v. 478, р. 26-31.
14. Jiangang Yu, Wenjia Han, Zhe Chen, Kaigui
Zhu. Comparison of blistering of W bulk and film
deposited by magnetron sputtering under helium
irradiation // Nuclear Materials and Energy. 2017, v. 12,
p. 588-592.
15. V.A. Belous, M.N. Bondarenko, G.P. Gla-
zunov, A.V. Ilchenko, A.S. Kuprin, A.L. Konotopskiy,
V.M. Lunyov, V.D. Ovcharenko. Erosion behavior of
W-Ta coatings in plasmas of stationary mirror penning
discharges // Problems of Atomic Science and
Technology. Series “Plasma Physics” (23). 2017,
N 1(107), p. 109-111.
16. P. Wang, W. Jacob, S. Elgeti. Deuterium
retention in tungsten films after different heat treatments
// Journal of Nuclear Materials. 2015, v. 456, p. 192-
199.
17. F.T.N. Vüllers, R. Spolenak. Alpha-vs, beta-W
nanocrystalline thin films: A comprehensive study of
sputter parameters and resulting materials' properties //
Thin Solid Films. 2015, v. 577, p. 26-34.
Article received 21.03.2018
СРАВНЕНИЕ БЛИСТЕРИНГА ПРИ ОБЛУЧЕНИИ МАССИВНОГО ВОЛЬФРАМА
И W-ПОКРЫТИЙ H2, D2 И He-ПЛАЗМОЙ
А.В. Никитин, А.С. Куприн, Г.Д. Толстолуцкая, Р.Л. Василенко, В.Д. Овчаренко, В.Н. Воеводин
Изучены изменения топографии поверхности массивного вольфрама, полученного методом порошкового
спекания (толщиной 20 мкм), и W-покрытий осажденными вакуумно-дуговым методом и ионным
распылением под воздействием низкоэнергетической водородной (дейтериевой) и гелиевой плазмы при
комнатной температуре. Поверхностные модификации, индуцированные плазменным облучением,
изучались с помощью сканирующей электронной микроскопии. После облучения гелиевой и дейтериевой
плазмой на поверхности образцов фольги W и покрытий, нанесенных ионным распылением, наблюдались
многочисленные блистеры. Поверхность W-покрытий, осажденных вакуумно-дуговым способом,
подвергалась только распылению при тех же условиях облучения.
ПОРІВНЯННЯ БЛІСТЕРІНГА ПРИ ОПРОМІНЕННІ МАСИВНОГО ВОЛЬФРАМУ
І W-ПОКРИТТІВ H2, D2 ТА He-ПЛАЗМОЮ
А.В. Нікітін, О.С. Купрін, Г.Д. Толстолуцька, Р.Л. Василенко, В.Д. Овчаренко, В.М. Воєводін
Вивчено зміну топографії поверхні масивного вольфраму, отриманого методом порошкового спікання
(товщиною 20 мкм), і W-покриттів осадженими вакуумно-дуговим методом та іонним розпиленням під
впливом низькоенергетичної водневої (дейтерієвої) і гелієвої плазми при кімнатній температурі. Поверхневі
модифікації, індуковані плазмовим опроміненням, вивчалися за допомогою сканувальної електронної
мікроскопії. Після опромінення гелієвою і дейтерієвою плазмою на поверхні зразків фольги W і покриттів,
нанесених іонним розпиленням, спостерігалися численні блістери. Поверхня W-покриттів, осаджених
вакуумно-дуговим способом, піддавалася тільки розпорошенню при тих же умовах опромінення.
|