Solar radiation influence onto the spent nuclear fuel dry storage container
In the paper the solar influence on the thermal state of storage container with spent nuclear fuel is investigated by numerical simulation. Thermal simulation for the single container and for the group of containers was carried out. The daily temperature fluctuations of the concrete container surf...
Збережено в:
| Опубліковано в: : | Вопросы атомной науки и техники |
|---|---|
| Дата: | 2018 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147067 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Solar radiation influence onto the spent nuclear fuel dry storage container / S.V. Alyokhina, S.S. Kapuza, A.O. Kostikov // Вопросы атомной науки и техники. — 2018. — № 2. — С. 57-62. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147067 |
|---|---|
| record_format |
dspace |
| spelling |
Alyokhina, S.V. Kapuza, S.S. Kostikov, A.O. 2019-02-13T15:15:35Z 2019-02-13T15:15:35Z 2018 Solar radiation influence onto the spent nuclear fuel dry storage container / S.V. Alyokhina, S.S. Kapuza, A.O. Kostikov // Вопросы атомной науки и техники. — 2018. — № 2. — С. 57-62. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 47.27.te https://nasplib.isofts.kiev.ua/handle/123456789/147067 In the paper the solar influence on the thermal state of storage container with spent nuclear fuel is investigated by numerical simulation. Thermal simulation for the single container and for the group of containers was carried out. The daily temperature fluctuations of the concrete container surface under maximum solar influence were calculated. The absence of solar radiation influence onto the spent fuel assemblies inside storage container is shown. Шляхом чисельного моделювання досліджено вплив сонячного випромінювання на тепловий стан контейнера з відпрацьованим ядерним паливом. Теплові дослідження виконані для окремо розташованого контейнера та для групи контейнерів. Обчислені добові коливання температури бетонної поверхні контейнера при максимальному сонячному навантаженні. Показано відсутність впливу сонячного випромінювання на відпрацьовані паливні збірки в середині контейнера зберігання. Путем численного моделирования исследовано влияние солнечного излучения на тепловое состояние контейнера с отработавшим ядерным топливом. Тепловые исследования выполнены для отдельно расположенного контейнера и для группы контейнеров. Вычислены суточные колебания температуры бетонной поверхности контейнера при максимальной солнечной нагрузке. Показано отсутствие влияния солнечного излучения на отработавшие топливные сборки в середине контейнера хранения. Results, which are presented in this paper, were obtained in A. Podgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine (research projects K-5-40 and III-66-15) and V.N. Karazin Kharkiv National University with partial support of IAEA under CRP-20605. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Проблемы современной ядерной энергетики Solar radiation influence onto the spent nuclear fuel dry storage container Вплив сонячного випромінювання на контейнер сухого зберігання відпрацьованого ядерного палива Влияние солнечного излучения на контейнер сухого хранения отработавшего ядерного топлива Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Solar radiation influence onto the spent nuclear fuel dry storage container |
| spellingShingle |
Solar radiation influence onto the spent nuclear fuel dry storage container Alyokhina, S.V. Kapuza, S.S. Kostikov, A.O. Проблемы современной ядерной энергетики |
| title_short |
Solar radiation influence onto the spent nuclear fuel dry storage container |
| title_full |
Solar radiation influence onto the spent nuclear fuel dry storage container |
| title_fullStr |
Solar radiation influence onto the spent nuclear fuel dry storage container |
| title_full_unstemmed |
Solar radiation influence onto the spent nuclear fuel dry storage container |
| title_sort |
solar radiation influence onto the spent nuclear fuel dry storage container |
| author |
Alyokhina, S.V. Kapuza, S.S. Kostikov, A.O. |
| author_facet |
Alyokhina, S.V. Kapuza, S.S. Kostikov, A.O. |
| topic |
Проблемы современной ядерной энергетики |
| topic_facet |
Проблемы современной ядерной энергетики |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Вплив сонячного випромінювання на контейнер сухого зберігання відпрацьованого ядерного палива Влияние солнечного излучения на контейнер сухого хранения отработавшего ядерного топлива |
| description |
In the paper the solar influence on the thermal state of storage container with spent nuclear fuel is investigated by
numerical simulation. Thermal simulation for the single container and for the group of containers was carried out.
The daily temperature fluctuations of the concrete container surface under maximum solar influence were
calculated. The absence of solar radiation influence onto the spent fuel assemblies inside storage container is shown.
Шляхом чисельного моделювання досліджено вплив сонячного випромінювання на тепловий стан
контейнера з відпрацьованим ядерним паливом. Теплові дослідження виконані для окремо розташованого
контейнера та для групи контейнерів. Обчислені добові коливання температури бетонної поверхні
контейнера при максимальному сонячному навантаженні. Показано відсутність впливу сонячного
випромінювання на відпрацьовані паливні збірки в середині контейнера зберігання.
Путем численного моделирования исследовано влияние солнечного излучения на тепловое состояние
контейнера с отработавшим ядерным топливом. Тепловые исследования выполнены для отдельно
расположенного контейнера и для группы контейнеров. Вычислены суточные колебания температуры
бетонной поверхности контейнера при максимальной солнечной нагрузке. Показано отсутствие влияния
солнечного излучения на отработавшие топливные сборки в середине контейнера хранения.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147067 |
| citation_txt |
Solar radiation influence onto the spent nuclear fuel dry storage container / S.V. Alyokhina, S.S. Kapuza, A.O. Kostikov // Вопросы атомной науки и техники. — 2018. — № 2. — С. 57-62. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT alyokhinasv solarradiationinfluenceontothespentnuclearfueldrystoragecontainer AT kapuzass solarradiationinfluenceontothespentnuclearfueldrystoragecontainer AT kostikovao solarradiationinfluenceontothespentnuclearfueldrystoragecontainer AT alyokhinasv vplivsonâčnogovipromínûvannânakonteinersuhogozberígannâvídpracʹovanogoâdernogopaliva AT kapuzass vplivsonâčnogovipromínûvannânakonteinersuhogozberígannâvídpracʹovanogoâdernogopaliva AT kostikovao vplivsonâčnogovipromínûvannânakonteinersuhogozberígannâvídpracʹovanogoâdernogopaliva AT alyokhinasv vliâniesolnečnogoizlučeniânakonteinersuhogohraneniâotrabotavšegoâdernogotopliva AT kapuzass vliâniesolnečnogoizlučeniânakonteinersuhogohraneniâotrabotavšegoâdernogotopliva AT kostikovao vliâniesolnečnogoizlučeniânakonteinersuhogohraneniâotrabotavšegoâdernogotopliva |
| first_indexed |
2025-11-26T01:39:39Z |
| last_indexed |
2025-11-26T01:39:39Z |
| _version_ |
1850603468173082624 |
| fulltext |
ISSN 1562-6016. PASТ. 2018. №2(114), p. 57-62.
SOLAR RADIATION INFLUENCE ONTO THE SPENT NUCLEAR FUEL
DRY STORAGE CONTAINER
S.V. Alyokhina
1,2
, S.S. Kapuza
2
, A.O. Kostikov
1
1
A. Podgorny Institute of Mechanical Engineering Problems of the National Academy
of Sciences of Ukraine, Kharkоv, Ukraine
E-mail: alyokhina@ipmach.kharkov.ua, tel. +38(057)294-27-94;
2
V.N. Karazin Kharkiv National University, Kharkov, Ukraine
In the paper the solar influence on the thermal state of storage container with spent nuclear fuel is investigated by
numerical simulation. Thermal simulation for the single container and for the group of containers was carried out.
The daily temperature fluctuations of the concrete container surface under maximum solar influence were
calculated. The absence of solar radiation influence onto the spent fuel assemblies inside storage container is shown.
PACS: 47.27.te
INTRODUCTION
Complex safety of the Dry Spent Nuclear Fuel
(SNF) Storage Facility includes thermal analysis of the
main components of storage system. All factors like
outer protection constructions, neighboring containers,
weather etc. should be taking into account.
At the safety analysis of the dry SNF storage
container, which is operated on the open-site storage
facility, the heat received by a container from solar
irradiance must be taken into account. This is evaluated
using the IAEA recommendations [1]. It is assumed that
during the daylight heat flux of solar irradiance to the
horizontal surface (to the top surface of the container)
equals to 800 W/m
2
and the one to the vertical surface
(the cylindrical surface of the container) equals to
200 W/m
2
. Traditional approach in numerical
simulation of the solar influence on the containers with
spent nuclear fuel consists in the setting solar heat flux
onto the surfaces of containers. However, in this
approach the heat flux is usually considered as constant
value [2] or influence of neighboring containers and
protection constructions is not taken into account [3].
Another approach at the thermal simulation consists in
increasing the ambient air temperature. It was used in
[4] and at the previous authors' simulations [5, 6].
Unfortunately, this approach does not give correct
results due to impossibility to detect the value, which
should be added to the normal ambient temperature.
Therefore, both approaches are not useful for solar
influence estimation at the dry spent nuclear fuel storage
on the open-site facility.
The purpose of this paper is numerical unsteady
simulation for detection of solar irradiance and its daily
fluctuation onto the thermal state of containers with
spent nuclear fuel.
1. PROBLEM DEFINITION
At the assessment of SNF storage containers'
thermal state on the Dry SNF Storage Facility of
Zaporizhska NPP it is necessary to detect the solar
influence on the concrete container and on the spent fuel
assemblies inside container.
The dry storage containers are operated on the open-
site storage facility (Fig. 1). The most dangerous
operating conditions from the thermal point of view is a
summer and the longest day with the maximal solar
irradiation.
Storage container was considered with assumption
that all 24 spent fuel assemblies are loaded with the
highest acceptable decay heat 1 kW [7] of each. Due to
low decreasing of the decay heat during whole period of
storage it value was not varying at calculation of the
daily temperature variation.
Fig. 1. Dry SNF Storage Facility on Zaporizhska NPP
mailto:alyokhina@ipmach.kharkov.ua
2. METHODOLOGY
The problem was considered in conjugate transient
formulation with usage of the mathematical model,
which is described in [6, 9].
For the detection of solar influence on the single
located container the calculation area was chosen
according to Fig. 2. Container is represented as a hollow
cylinder. Boundary conditions are next:
– the heat flux on the inner surfaces (B7, B8, B9). Its
values are optioned from results calculated in [6] using
methodology described in [8];
– the zero heat flux on B6 due to low level of heat
exchanging with ground;
– the atmospheric pressure and temperature on the
surfaces B1 – B5 while taking into account the daily
variation of temperature.
B1
B2
B3
B4
B9
B6
B3
B1
B5B7
B8
y
x
z ambient
atmospheric air
concrete
container
Fig. 2. Calculation area for single container
The temperature measurements during last 7 years
were analyzed for the setting up of the daily variation of
temperature. The highest temperature and its
fluctuations during the longest summer day (21 June)
were chosen as a boundary condition (Fig. 3).
Fig. 3. Daily variation temperature
Solar radiation intensity was specified as a piecewise
linear function:
0:00 < t < 6:00:q = 0;
6:00 < t <10:00:q = 137.5·t-275;
10:00 < t <14:00:q = 1100;
14:00 < t < 19:00:q = 2640-110·t;
19:00 < t < 24:00:q = 0.
Position of the sun on the sky during the day
(altitude h and azimuth A) is calculated according to the
next formulas [10]:
sinsincoscoscossin h ;
h
A
cos
sincos
sin
,
where 360
24
smt
– aberration of the sun from position
at midday, degree;
365
2
sin5,23
d – declination of
the sun, degree; – latitude; tsm – time after sun
midday; d – numbers of day after vernal equinox.
For the study of solar influence on the containers’
group the part of storage platform with 50 containers
was considered (Fig. 4). The same boundary conditions
were applied but surfaces B1 and B2 were divided by
two parts: the atmospheric pressure and the daily
varying temperature on B1-1 and B3-1; absence of heat
flux on B1-2 and B3-2 (parts of surfaces which
corresponds to Storage Facility protection wall).
4
,5
A A
4500 12850 7900
73000
A - А B5 B4
B2
B1-1 B3-1
B6
B3-2
B1-2
B7 B8 B9
Fig. 4. Calculation area for containers’ group
3. RESULTS DISCUSSION
The temperature variation on cylindrical surface of
single located container depending of the side of the
world and location by height from platform is presented
on Fig. 5.
The lowest temperatures on container's surface are
from north side where insolation is absent. It is typical
for the northern hemisphere and for the latitude of
storage platform location. The eastern and western part
of storage container are under lower insolation than
south part but the maximum temperature during the day
is reached on the western side. It is caused by next
factors: the western side after night cooling is heated
during the first part of day due to increasing of ambient
temperature; during the second part of day it is heated
by solar radiation. So, eastern part has lower
temperature than western side on the moment of the
solar irradiance starting. Since during the light day the
western and eastern parts of container got equal solar
energy so temperature of western part become higher.
The temperature state of southern part of container is
between of these two cases because its pre-heating by
increasing ambient temperature is less than western part.
The temperatures of container surface are different
on height of container, which is caused by outer factors
influence. The lowest temperatures are on top part of
container because this part is under the influence of
intensive convective flows and heat is removing
quickly. The highest temperatures are in bottom part of
container. It, probably, caused by stagnation regions of
ambient air, which decrease of convection intensity.
a b
c d
Fig. 5. Container surface temperature varying with time: a – north; b – east; c – south; d – west
Three levels (1.45, 2.90, 4.35 m from platform) on
each side of container and four points (0, 0.07, 0.17,
0.34 m from container surface) on each level were
selected. For these points the temperature variation in
time was analyzed.
Amplitude of the daily temperature variation on the
west side is the highest, so, container is warming up
from the west side (Fig. 6) more than from other sides.
The temperature on the surface of container is
intensively varying than inside concrete shell. The
temperature level inside concrete container is higher
than the one on the surface and almost doesn't varying
during the day, which is caused by heat flux coming
from spent fuel assemblies.
a
b
c
Fig. 6. Warming up of container from west side
(a – 1.45 m from platform; b – 2.90 m from platform;
c – 4.35 m from platform)
For the northern side of container, which has the
lowest temperatures and temperature gradient during the
day, the warming up of concrete shell (Fig. 7) has the
same tendency as for western side. During the day
temperature varies mostly on the outer surface of
container. The temperature inside concrete container
stays stable.
For both presented container sides on distance
0.34 m from surface the temperature does not vary. The
level of temperatures is decreased in direction to the
outer container surface along with increasing of the
daily temperature variation. These statements are
correct for eastern and southern sides too.
a
b
c
Fig. 7. Warming up of container from north side
(a – 1.45 m from platform; b – 2.90 m from platform;
c – 4.35 m from platform)
As results shown the largest temperature fluctuations
are on the surface of containers. This fact can results
microcracks in concrete containers, which were visually
detected on surfaces (Fig. 8). Thermal fluctuation can
decrease the container durability together with the
irradiation embrittlement. It is especially dangerous in
winter when ambient temperatures become lower than
zero centigrade and water (melted snow, rain, mist etc.)
can froze inside these microcracks.
The density of total radiation heat flux onto the
surfaces of containers in the end of period of maximum
solar influence (14 pm) is shown on Fig. 9. The negative
values show heat flux that absorbed by surfaces (dark
zones), the positive ones show heat flux that is emitted
by surfaces (light zones). The largest heat comes to the
horizontal surface of the storage platform. The zones,
which are shaded by containers or protection wall, emitt
heat. The containers' surfaces inside the group derive
small solar irradiation.
The temperature of the surfaces of the components
of the Dry SNF Storage Facility (Fig. 10) for the same
time (14 pm) is varying between 312 K (39 ºС) and
380 К (107 ºС). The top part of containers is more
heated because they are under the direct solar influence
during all light day and are not shaded by protection
wall or other containers. The cylindrical surfaces are
less heated because other containers shade them time to
time during the day and their cooling by convection are
more intensive. The surface of storage platform is
heated non-uniformly, their temperature varies between
22 К (49 °С) and 352 К (79 °С), the highest
temperatures are in transport zones, the lowest ones are
between containers.
Due to difficulties of detection of neighboring
containers influence on each container in the group the
conservative approach could be used. So, the shadow
from other containers and protective wall could be
neglected. In conservative approach (without shadows)
the cylindrical surface will gather more heat and the
safety requirements should be observed even in this
conditions.
Fig. 8. Microcracks on the surfaces of storage containers
Fig. 9. Density of the total radiation flux
Fig. 10. Temperature field of concrete surfaces of storage facility components
CONCLUSIONS
1. Results of numerical simulation are shown that
solar irradiation does not have influence on spent fuel
assemblies, which placed inside storage container.
2. Solar irradiance has influence on the concrete
container and its value is changed by container
perimeter depending on the side of the world. The
largest temperature fluctuations are on the west surface
of container, the lowest are on the north one.
3. Warming up of concrete container is not-uniform
by thickness. Solar influence and daily ambient
temperature fluctuations is observed only up to 30 cm in
depth from outer container surface. Temperature
fluctuations in bottom part of container are higher due
to low convective heat exchange with concrete platform.
ACKNOWLEDGMENTS
Results, which are presented in this paper, were
obtained in A. Podgorny Institute of Mechanical
Engineering Problems of the National Academy of
Sciences of Ukraine (research projects K-5-40 and III-
66-15) and V.N. Karazin Kharkiv National University
with partial support of IAEA under CRP-20605.
REFERENCES
1. Regulations for the Safe Transport of
Radioactive Material. 2012 Edition // IAEA Safety
Standards Series. Specific Safety Requirements.
No. SSR-6. IAEA, Vienna.
2. R. Poškas, V. Šimonis, P. Poškas, A. Sirvydas
Thermal analysis of CASTOR RBMK-1500 casks
during long-term storage of spent nuclear fuel // Annals
of Nuclear Energy. 2017, v. 99, p. 40-46.
3. Spent Fuel Transportation Package Response to
the Caldecott Tunnel Fire Scenario, NUREG/CR-6894,
Rev. 1, PNNL-15346, 2007, 108 p.
4. Preliminary safety evaluation report. Americas
LLC NUHOMS EOS dry spent fuel storage system //
Areva Inc. 2017, 151 р.
5. S. Alyokhina, A. Kostikov, S. Kruhlov. Safety
Issues of the Dry Storage of the Spent Nuclear Fuel //
Problems of Atomic Science and Technology. Series
“Physics of Radiation Effect and Radiation
Materials Science”. 2017, N 2(108), p. 70-74.
6. S. Alyokhina, V. Goloshchapov, A. Kostikov,
Yu. Matsevity. Simulation of thermal state of containers
with spent nuclear fuel: multistage approach //
International Journal of Energy Research. 2015, v. 39,
issue 14, p. 1917-1924; DOI: 10.1002/er.3387.
7. I.I. Zalyubovskii, S.A. Pismenetskii,
V.G. Rudychev, S.P. Klimov, A.E. Luchnaya,
E.V. Rudychev. External radiation of a container used
for dry storage of spent WWER-1000 nuclear fuel from
the Zaporozhie nuclear power plant // Atomic Energy.
2009, v. 109, issue 6, p. 396-403; DOI: 10.1007/s10512-
011-9374-8
8. A.O. Kostikov. Use of the PHOENICS program
complex of solution of heat mass transfer problems for
the determination of a heat emission coefficient //
Engineering Simulation. 2000, v. 17, p. 271-280.
9. S. Alyokhina, A. Kostikov. Unsteady heat
exchange at the dry spent nuclear fuel storage // Nuclear
Engineering and Technology. 2017, v. 49, issue 7,
p. 1457-1462; DOI: 10.1016/j.net.2017.07.029
10. B.J. Brinkworth. Solar energy for man. London:
Compton press, 1972, 251 p.
Article received 15.03.2018
W/m2
ВЛИЯНИЕ СОЛНЕЧНОГО ИЗЛУЧЕНИЯ НА КОНТЕЙНЕР СУХОГО ХРАНЕНИЯ
ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА
С.В. Алёхина, С.С. Капуза, А.О. Костиков
Путем численного моделирования исследовано влияние солнечного излучения на тепловое состояние
контейнера с отработавшим ядерным топливом. Тепловые исследования выполнены для отдельно
расположенного контейнера и для группы контейнеров. Вычислены суточные колебания температуры
бетонной поверхности контейнера при максимальной солнечной нагрузке. Показано отсутствие влияния
солнечного излучения на отработавшие топливные сборки в середине контейнера хранения.
ВПЛИВ СОНЯЧНОГО ВИПРОМІНЮВАННЯ НА КОНТЕЙНЕР СУХОГО ЗБЕРІГАННЯ
ВІДПРАЦЬОВАНОГО ЯДЕРНОГО ПАЛИВА
С.В. Альохіна, С.С. Капуза, А.О. Костіков
Шляхом чисельного моделювання досліджено вплив сонячного випромінювання на тепловий стан
контейнера з відпрацьованим ядерним паливом. Теплові дослідження виконані для окремо розташованого
контейнера та для групи контейнерів. Обчислені добові коливання температури бетонної поверхні
контейнера при максимальному сонячному навантаженні. Показано відсутність впливу сонячного
випромінювання на відпрацьовані паливні збірки в середині контейнера зберігання.
|