Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville
In this paper we study the equation w⁽⁴⁾=5w′′(w²−w′)+5w(w′)²−⁵+(λz+α)w+γ, which is one of the higher-order Painlevé equations (i.e., equations in the polynomial class having the Painlevé property). Like the classical Painlevé equations, this equation admits a Hamiltonian formulation, Bäcklund tran...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147104 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Non-Integrability of Some Higher-Order Painlevé Equations in the Sense of Liouville / O. Christov, G. Georgiev // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In this paper we study the equation
w⁽⁴⁾=5w′′(w²−w′)+5w(w′)²−⁵+(λz+α)w+γ,
which is one of the higher-order Painlevé equations (i.e., equations in the polynomial class having the Painlevé property). Like the classical Painlevé equations, this equation admits a Hamiltonian formulation, Bäcklund transformations and families of rational and special functions. We prove that this equation considered as a Hamiltonian system with parameters γ/λ=3k, γ/λ=3k−1, k∈Z, is not integrable in Liouville sense by means of rational first integrals. To do that we use the Ziglin-Morales-Ruiz-Ramis approach. Then we study the integrability of the second and third members of the PII-hierarchy. Again as in the previous case it turns out that the normal variational equations are particular cases of the generalized confluent hypergeometric equations whose differential Galois groups are non-commutative and hence, they are obstructions to integrability.
|
|---|---|
| ISSN: | 1815-0659 |