Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution

We construct a complex linear Weil representation ρ of the generalized special linear group G=SL¹∗(2,An) (An=K[x]/⟨xⁿ⟩, K the quadratic extension of the finite field k of q elements, q odd), where An is endowed with a second class involution. After the construction of a specific data, the representa...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2015
Автори: Gutiérrez Frez, L., Pantoja, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147110
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution / L. Gutiérrez Frez, J. Pantoja // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147110
record_format dspace
spelling Gutiérrez Frez, L.
Pantoja, J.
2019-02-13T16:50:23Z
2019-02-13T16:50:23Z
2015
Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution / L. Gutiérrez Frez, J. Pantoja // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20C33; 20C15; 20F05
DOI:10.3842/SIGMA.2015.076
https://nasplib.isofts.kiev.ua/handle/123456789/147110
We construct a complex linear Weil representation ρ of the generalized special linear group G=SL¹∗(2,An) (An=K[x]/⟨xⁿ⟩, K the quadratic extension of the finite field k of q elements, q odd), where An is endowed with a second class involution. After the construction of a specific data, the representation is defined on the generators of a Bruhat presentation of G, via linear operators satisfying the relations of the presentation. The structure of a unitary group U associated to G is described. Using this group we obtain a first decomposition of ρ.
We thank Pierre Cartier for his comments and suggestions at the beginning of this work. Both authors were partially supported by FONDECYT grant 1120578. Moreover, the first author was partially supported by the Universidad Austral de Chile, while the second author was also partially supported by Pontificia Universidad Cat´olica de Valpara´ıso.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution
spellingShingle Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution
Gutiérrez Frez, L.
Pantoja, J.
title_short Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution
title_full Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution
title_fullStr Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution
title_full_unstemmed Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution
title_sort weil representation of a generalized linear group over a ring of truncated polynomials over a finite field endowed with a second class involution
author Gutiérrez Frez, L.
Pantoja, J.
author_facet Gutiérrez Frez, L.
Pantoja, J.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct a complex linear Weil representation ρ of the generalized special linear group G=SL¹∗(2,An) (An=K[x]/⟨xⁿ⟩, K the quadratic extension of the finite field k of q elements, q odd), where An is endowed with a second class involution. After the construction of a specific data, the representation is defined on the generators of a Bruhat presentation of G, via linear operators satisfying the relations of the presentation. The structure of a unitary group U associated to G is described. Using this group we obtain a first decomposition of ρ.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147110
citation_txt Weil Representation of a Generalized Linear Group over a Ring of Truncated Polynomials over a Finite Field Endowed with a Second Class Involution / L. Gutiérrez Frez, J. Pantoja // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT gutierrezfrezl weilrepresentationofageneralizedlineargroupoveraringoftruncatedpolynomialsoverafinitefieldendowedwithasecondclassinvolution
AT pantojaj weilrepresentationofageneralizedlineargroupoveraringoftruncatedpolynomialsoverafinitefieldendowedwithasecondclassinvolution
first_indexed 2025-12-02T05:40:53Z
last_indexed 2025-12-02T05:40:53Z
_version_ 1850861724566028288