On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces

The paper presents the bosonic and fermionic supersymmetric extensions of the structural equations describing conformally parametrized surfaces immersed in a Grasmann superspace, based on the authors' earlier results. A detailed analysis of the symmetry properties of both the classical and supe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Bertrand, S., Grundland, A.M., Hariton, A.J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147112
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces / S. Bertrand, A.M. Grundland, A.J. Hariton // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147112
record_format dspace
spelling Bertrand, S.
Grundland, A.M.
Hariton, A.J.
2019-02-13T16:52:14Z
2019-02-13T16:52:14Z
2015
On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces / S. Bertrand, A.M. Grundland, A.J. Hariton // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q51; 53A05; 22E70
DOI:10.3842/SIGMA.2015.046
https://nasplib.isofts.kiev.ua/handle/123456789/147112
The paper presents the bosonic and fermionic supersymmetric extensions of the structural equations describing conformally parametrized surfaces immersed in a Grasmann superspace, based on the authors' earlier results. A detailed analysis of the symmetry properties of both the classical and supersymmetric versions of the Gauss-Weingarten equations is performed. A supersymmetric generalization of the conjecture establishing the necessary conditions for a system to be integrable in the sense of soliton theory is formulated and illustrated by the examples of supersymmetric versions of the sine-Gordon equation and the Gauss-Codazzi equations.
This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html. We thank professor D. Levi (University of Roma Tre) for useful discussions on this topic. AMG’s work was supported by a research grant from NSERC. SB acknowledges a doctoral fellowship provided by the FQRNT of the Gouvernement du Qu´ebec. AJH wishes to acknowledge and thank the Mathematical Physics Laboratory of the Centre de Recherches Math´ematiques for the opportunity to contribute to this research.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
spellingShingle On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
Bertrand, S.
Grundland, A.M.
Hariton, A.J.
title_short On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
title_full On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
title_fullStr On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
title_full_unstemmed On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces
title_sort on the integrability of supersymmetric versions of the structural equations for conformally parametrized surfaces
author Bertrand, S.
Grundland, A.M.
Hariton, A.J.
author_facet Bertrand, S.
Grundland, A.M.
Hariton, A.J.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The paper presents the bosonic and fermionic supersymmetric extensions of the structural equations describing conformally parametrized surfaces immersed in a Grasmann superspace, based on the authors' earlier results. A detailed analysis of the symmetry properties of both the classical and supersymmetric versions of the Gauss-Weingarten equations is performed. A supersymmetric generalization of the conjecture establishing the necessary conditions for a system to be integrable in the sense of soliton theory is formulated and illustrated by the examples of supersymmetric versions of the sine-Gordon equation and the Gauss-Codazzi equations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147112
citation_txt On the Integrability of Supersymmetric Versions of the Structural Equations for Conformally Parametrized Surfaces / S. Bertrand, A.M. Grundland, A.J. Hariton // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.
work_keys_str_mv AT bertrands ontheintegrabilityofsupersymmetricversionsofthestructuralequationsforconformallyparametrizedsurfaces
AT grundlandam ontheintegrabilityofsupersymmetricversionsofthestructuralequationsforconformallyparametrizedsurfaces
AT haritonaj ontheintegrabilityofsupersymmetricversionsofthestructuralequationsforconformallyparametrizedsurfaces
first_indexed 2025-12-07T19:30:05Z
last_indexed 2025-12-07T19:30:05Z
_version_ 1850879041971683328