Post-Lie Algebras and Isospectral Flows
In this paper we explore the Lie enveloping algebra of a post-Lie algebra derived from a classical R-matrix. An explicit exponential solution of the corresponding Lie bracket flow is presented. It is based on the solution of a post-Lie Magnus-type differential equation.
Saved in:
| Date: | 2015 |
|---|---|
| Main Authors: | Ebrahimi-Fard, K., Lundervold, A., Mencattini, I., Munthe-Kaas, H.Z. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2015
|
| Series: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147113 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Post-Lie Algebras and Isospectral Flows / K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H.Z. Munthe-Kaas // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Post-Lie Algebras and Isospectral Flows
by: Ebrahimi-Fard, K., et al.
Published: (2015) -
The 2-Transitive Transplantable Isospectral Drums
by: Schillewaert, J., et al.
Published: (2011) -
The 2-Transitive Transplantable Isospectral Drums
by: Schillewaert, J., et al.
Published: (2011) -
Leibniz Algebras and Lie Algebras
by: Mason, G., et al.
Published: (2013) -
Noncommutative Root Space Witt, Ricci Flow, and Poisson Bracket Continual Lie Algebras
by: Zuevsky, A.
Published: (2009)