Populations of Solutions to Cyclotomic Bethe Equations

We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain ''...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Varchenko, A., Young, C.A.S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147118
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Populations of Solutions to Cyclotomic Bethe Equations / A. Varchenko, C.A.S Young // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We study solutions of the Bethe Ansatz equations for the cyclotomic Gaudin model of [Vicedo B., Young C.A.S., arXiv:1409.6937]. We give two interpretations of such solutions: as critical points of a cyclotomic master function, and as critical points with cyclotomic symmetry of a certain ''extended'' master function. In finite types, this yields a correspondence between the Bethe eigenvectors and eigenvalues of the cyclotomic Gaudin model and those of an ''extended'' non-cyclotomic Gaudin model. We proceed to define populations of solutions to the cyclotomic Bethe equations, in the sense of [Mukhin E., Varchenko A., Commun. Contemp. Math. 6 (2004), 111-163, math.QA/0209017], for diagram automorphisms of Kac-Moody Lie algebras. In the case of type A with the diagram automorphism, we associate to each population a vector space of quasi-polynomials with specified ramification conditions. This vector space is equipped with a Z₂-gradation and a non-degenerate bilinear form which is (skew-)symmetric on the even (resp. odd) graded subspace. We show that the population of cyclotomic critical points is isomorphic to the variety of isotropic full flags in this space.
ISSN:1815-0659