Neural and statistical techniques for remote sensing image classification
This paper examines different approaches to remote sensing images classification. Included in the study are statistical approach, in particular Gaussian maximum likelihood classifier, and two different neural networks paradigms: multilayer perceptron trained with EDBD algorithm, and ARTMAP neural ne...
Збережено в:
| Дата: | 2010 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут програмних систем НАН України
2010
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/14712 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Neural and statistical techniques for remote sensing image classification/ Iu. Grypych, N. Kussul, O. Kussul// Пробл. програмув. — 2010. — № 2-3. — С. 577-583. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | This paper examines different approaches to remote sensing images classification. Included in the study are statistical approach, in particular Gaussian maximum likelihood classifier, and two different neural networks paradigms: multilayer perceptron trained with EDBD algorithm, and ARTMAP neural network. These classification methods are compared on data acquired from Landsat-7 satellite. Experimental results showed that to achieve better performance of classifiers modular neural networks and committee machines should be applied. |
|---|