Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds

We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler-Einstein manifold of positive scalar curvature and endowed with particular spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc spinors in a certain subbundle...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2015
Автори: Nakad, R., Pilca, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147124
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds / R. Nakad, M. Pilca // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147124
record_format dspace
spelling Nakad, R.
Pilca, M.
2019-02-13T17:06:19Z
2019-02-13T17:06:19Z
2015
Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds / R. Nakad, M. Pilca // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53C27; 53C25; 53C55; 58J50; 83C60
DOI:10.3842/SIGMA.2015.054
https://nasplib.isofts.kiev.ua/handle/123456789/147124
We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler-Einstein manifold of positive scalar curvature and endowed with particular spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinc spinor field vanishes. This extends to the spinc case the result of A. Moroianu stating that, on a compact Kähler-Einstein manifold of complex dimension 4ℓ+3 carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero.
The first named author gratefully acknowledges the financial support of the Berlin Mathematical School (BMS) and would like to thank the University of Potsdam, especially Christian B¨ar and his group, for their generous support and friendly welcome during summer 2013 and summer 2014. The first named author thanks also the Faculty of Mathematics of the University of Regensburg for its support and hospitality during his two visits in July 2013 and July 2014. The authors are very much indebted to Oussama Hijazi and Andrei Moroianu for many useful discussions. Both authors thank the editor and the referees for carefully reading the paper and for providing constructive comments, which substantially improved it.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
spellingShingle Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
Nakad, R.
Pilca, M.
title_short Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
title_full Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
title_fullStr Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
title_full_unstemmed Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds
title_sort eigenvalue estimates of the spinc dirac operator and harmonic forms on kähler-einstein manifolds
author Nakad, R.
Pilca, M.
author_facet Nakad, R.
Pilca, M.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler-Einstein manifold of positive scalar curvature and endowed with particular spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinc spinor field vanishes. This extends to the spinc case the result of A. Moroianu stating that, on a compact Kähler-Einstein manifold of complex dimension 4ℓ+3 carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147124
citation_txt Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds / R. Nakad, M. Pilca // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT nakadr eigenvalueestimatesofthespincdiracoperatorandharmonicformsonkahlereinsteinmanifolds
AT pilcam eigenvalueestimatesofthespincdiracoperatorandharmonicformsonkahlereinsteinmanifolds
first_indexed 2025-12-07T18:58:44Z
last_indexed 2025-12-07T18:58:44Z
_version_ 1850877070527168512