From Polygons to Ultradiscrete Painlevé Equations

The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Ormerod, C.M., Yamada, Y.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147126
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:From Polygons to Ultradiscrete Painlevé Equations / C.M. Ormerod, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 54 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147126
record_format dspace
spelling Ormerod, C.M.
Yamada, Y.
2019-02-13T17:08:06Z
2019-02-13T17:08:06Z
2015
From Polygons to Ultradiscrete Painlevé Equations / C.M. Ormerod, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 54 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14T05; 14H70; 39A13
DOI:10.3842/SIGMA.2015.056
https://nasplib.isofts.kiev.ua/handle/123456789/147126
The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons with three to eleven sides whose groups of piecewise linear transformations coincide with the Bäcklund transformations and the evolution equations for the ultradiscrete Painlevé equations.
Christopher M. Ormerod would like to acknowledge Eric Rains for his helpful discussions. Y. Yamada is supported by JSPS KAKENHI Grant Number 26287018.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
From Polygons to Ultradiscrete Painlevé Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title From Polygons to Ultradiscrete Painlevé Equations
spellingShingle From Polygons to Ultradiscrete Painlevé Equations
Ormerod, C.M.
Yamada, Y.
title_short From Polygons to Ultradiscrete Painlevé Equations
title_full From Polygons to Ultradiscrete Painlevé Equations
title_fullStr From Polygons to Ultradiscrete Painlevé Equations
title_full_unstemmed From Polygons to Ultradiscrete Painlevé Equations
title_sort from polygons to ultradiscrete painlevé equations
author Ormerod, C.M.
Yamada, Y.
author_facet Ormerod, C.M.
Yamada, Y.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The rays of tropical genus one curves are constrained in a way that defines a bounded polygon. When we relax this constraint, the resulting curves do not close, giving rise to a system of spiraling polygons. The piecewise linear transformations that preserve the forms of those rays form tropical rational presentations of groups of affine Weyl type. We present a selection of spiraling polygons with three to eleven sides whose groups of piecewise linear transformations coincide with the Bäcklund transformations and the evolution equations for the ultradiscrete Painlevé equations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147126
citation_txt From Polygons to Ultradiscrete Painlevé Equations / C.M. Ormerod, Y. Yamada // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 54 назв. — англ.
work_keys_str_mv AT ormerodcm frompolygonstoultradiscretepainleveequations
AT yamaday frompolygonstoultradiscretepainleveequations
first_indexed 2025-12-07T18:00:42Z
last_indexed 2025-12-07T18:00:42Z
_version_ 1850873418511024128