Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials

We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Grandati, Y., Quesne, C.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147132
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials / Y. Grandati, C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147132
record_format dspace
spelling Grandati, Y.
Quesne, C.
2019-02-13T17:17:58Z
2019-02-13T17:17:58Z
2015
Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials / Y. Grandati, C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 81Q05; 81Q60; 42C05
DOI:10.3842/SIGMA.2015.061
https://nasplib.isofts.kiev.ua/handle/123456789/147132
We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property.
This paper is a contribution to the Special Issue on Exact Solvability and Symmetry Avatars in honour of Luc Vinet. The full collection is available at http://www.emis.de/journals/SIGMA/ESSA2014.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
spellingShingle Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
Grandati, Y.
Quesne, C.
title_short Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
title_full Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
title_fullStr Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
title_full_unstemmed Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials
title_sort confluent chains of dbt: enlarged shape invariance and new orthogonal polynomials
author Grandati, Y.
Quesne, C.
author_facet Grandati, Y.
Quesne, C.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct rational extensions of the Darboux-Pöschl-Teller and isotonic potentials via two-step confluent Darboux transformations. The former are strictly isospectral to the initial potential, whereas the latter are only quasi-isospectral. Both are associated to new families of orthogonal polynomials, which, in the first case, depend on a continuous parameter. We also prove that these extended potentials possess an enlarged shape invariance property.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147132
citation_txt Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials / Y. Grandati, C. Quesne // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 51 назв. — англ.
work_keys_str_mv AT grandatiy confluentchainsofdbtenlargedshapeinvarianceandneworthogonalpolynomials
AT quesnec confluentchainsofdbtenlargedshapeinvarianceandneworthogonalpolynomials
first_indexed 2025-11-27T10:33:03Z
last_indexed 2025-11-27T10:33:03Z
_version_ 1850852099282173952