GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators

We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded i...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2015
Main Authors: Pakuliak, S., Ragoucy, E., Slavnov, N.A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147135
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense.
ISSN:1815-0659