GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators

We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded i...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2015
Main Authors: Pakuliak, S., Ragoucy, E., Slavnov, N.A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147135
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147135
record_format dspace
spelling Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
2019-02-13T17:19:52Z
2019-02-13T17:19:52Z
2015
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 17B37; 81R50
DOI:10.3842/SIGMA.2015.64
https://nasplib.isofts.kiev.ua/handle/123456789/147135
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense.
The work of S.P. was supported in part by RFBR-Ukraine grant 14-01-90405-ukr-a. N.A.S. was supported by the Program of RAS “Nonlinear Dynamics in Mathematics and Physics”, RFBR14-01-00860-a, RFBR-13-01-12405-ofi-m2.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
spellingShingle GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
title_short GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_full GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_fullStr GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_full_unstemmed GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
title_sort gl(3) -based quantum integrable composite models. ii. form factors of local operators
author Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
author_facet Pakuliak, S.
Ragoucy, E.
Slavnov, N.A.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded into series with respect to the inverse spectral parameter we calculate matrix elements of the local operators in the basis of the transfer matrix eigenstates. We obtain determinant representations for these matrix elements. Thus, we solve the inverse scattering problem in a weak sense.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147135
fulltext
citation_txt GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT pakuliaks gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators
AT ragoucye gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators
AT slavnovna gl3basedquantumintegrablecompositemodelsiiformfactorsoflocaloperators
first_indexed 2025-11-24T15:04:59Z
last_indexed 2025-11-24T15:04:59Z
_version_ 1850847335556317184