GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators
We study integrable models solvable by the nested algebraic Bethe ansatz and possessing the GL(3)-invariant R-matrix. We consider a composite model where the total monodromy matrix of the model is presented as a product of two partial monodromy matrices. Assuming that the last ones can be expanded i...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2015 |
| Main Authors: | Pakuliak, S., Ragoucy, E., Slavnov, N.A. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2015
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/147135 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | GL(3) -Based Quantum Integrable Composite Models. II. Form Factors of Local Operators / S. Pakuliak, E. Ragoucy, N.A. Slavnov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Bethe Vectors of Quantum Integrable Models with GL(3) Trigonometric R-Matrix
by: Belliard, S., et al.
Published: (2013) -
Universal Bethe Ansatz and Scalar Products of Bethe Vectors
by: Belliard, S., et al.
Published: (2010) -
Irreducible Generic Gelfand-Tsetlin Modules of gl(n)
by: Futorny, V., et al.
Published: (2015) -
On a finite state representation of \(GL(n,\mathbb{Z})\)
by: Oliynyk, A., et al.
Published: (2023) -
Граничные оценки числа ребер GL-моделей поведения отказоустойчивых многопроцессорных систем в потоке отказов
by: Романкевич, А.М., et al.
Published: (2008)