Path Integrals on Euclidean Space Forms
In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, base...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2015 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2015
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147139 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147139 |
|---|---|
| record_format |
dspace |
| spelling |
Capobianco, G. Reartes, W. 2019-02-13T17:24:11Z 2019-02-13T17:24:11Z 2015 Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53Z05; 81S40 DOI:10.3842/SIGMA.2015.071 https://nasplib.isofts.kiev.ua/handle/123456789/147139 In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions. We thank Hern´an Cendra for his reading of the manuscript and useful suggestions. This work was supported by the Universidad Nacional del Sur (Grants PGI 24/L085, PGI 24/L086 and PGI 24/ZL10). en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Path Integrals on Euclidean Space Forms Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Path Integrals on Euclidean Space Forms |
| spellingShingle |
Path Integrals on Euclidean Space Forms Capobianco, G. Reartes, W. |
| title_short |
Path Integrals on Euclidean Space Forms |
| title_full |
Path Integrals on Euclidean Space Forms |
| title_fullStr |
Path Integrals on Euclidean Space Forms |
| title_full_unstemmed |
Path Integrals on Euclidean Space Forms |
| title_sort |
path integrals on euclidean space forms |
| author |
Capobianco, G. Reartes, W. |
| author_facet |
Capobianco, G. Reartes, W. |
| publishDate |
2015 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147139 |
| citation_txt |
Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ. |
| work_keys_str_mv |
AT capobiancog pathintegralsoneuclideanspaceforms AT reartesw pathintegralsoneuclideanspaceforms |
| first_indexed |
2025-12-07T15:28:24Z |
| last_indexed |
2025-12-07T15:28:24Z |
| _version_ |
1850863837330276352 |