Path Integrals on Euclidean Space Forms

In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, base...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2015
Автори: Capobianco, G., Reartes, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147139
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147139
record_format dspace
spelling Capobianco, G.
Reartes, W.
2019-02-13T17:24:11Z
2019-02-13T17:24:11Z
2015
Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53Z05; 81S40
DOI:10.3842/SIGMA.2015.071
https://nasplib.isofts.kiev.ua/handle/123456789/147139
In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions.
We thank Hern´an Cendra for his reading of the manuscript and useful suggestions. This work was supported by the Universidad Nacional del Sur (Grants PGI 24/L085, PGI 24/L086 and PGI 24/ZL10).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Path Integrals on Euclidean Space Forms
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Path Integrals on Euclidean Space Forms
spellingShingle Path Integrals on Euclidean Space Forms
Capobianco, G.
Reartes, W.
title_short Path Integrals on Euclidean Space Forms
title_full Path Integrals on Euclidean Space Forms
title_fullStr Path Integrals on Euclidean Space Forms
title_full_unstemmed Path Integrals on Euclidean Space Forms
title_sort path integrals on euclidean space forms
author Capobianco, G.
Reartes, W.
author_facet Capobianco, G.
Reartes, W.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper we develop a quantization method for flat compact manifolds based on path integrals. In this method the Hilbert space of holomorphic functions in the complexification of the manifold is used. This space is a reproducing kernel Hilbert space. A definition of the Feynman propagator, based on the reproducing property of this space, is proposed. In the Rⁿ case the obtained results coincide with the known expressions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147139
citation_txt Path Integrals on Euclidean Space Forms / G. Capobianco, W. Reartes // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 35 назв. — англ.
work_keys_str_mv AT capobiancog pathintegralsoneuclideanspaceforms
AT reartesw pathintegralsoneuclideanspaceforms
first_indexed 2025-12-07T15:28:24Z
last_indexed 2025-12-07T15:28:24Z
_version_ 1850863837330276352