(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2015 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2015
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147140 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147140 |
|---|---|
| record_format |
dspace |
| spelling |
Lorand, J. Weinstein, А. 2019-02-13T17:24:51Z 2019-02-13T17:24:51Z 2015 (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 15A21; 18B10; 53D99 DOI:10.3842/SIGMA.2015.072 https://nasplib.isofts.kiev.ua/handle/123456789/147140 We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other. This paper is a contribution to the Special Issue on Poisson Geometry in Mathematics and Physics. The full collection is available at http://www.emis.de/journals/SIGMA/Poisson2014.html. Jonathan Lorand was partially supported by ETH Zurich, the city of Zurich, and the Anna & Hans K¨agi Foundation. Part of this research was conducted while he was at UC Berkeley as a Visiting Student Researcher. The authors wish to thank the referees, in particular for comments which led to a more concise presentation of our results. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
| spellingShingle |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces Lorand, J. Weinstein, А. |
| title_short |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
| title_full |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
| title_fullStr |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
| title_full_unstemmed |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces |
| title_sort |
(co)isotropic pairs in poisson and presymplectic vector spaces |
| author |
Lorand, J. Weinstein, А. |
| author_facet |
Lorand, J. Weinstein, А. |
| publishDate |
2015 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147140 |
| citation_txt |
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT lorandj coisotropicpairsinpoissonandpresymplecticvectorspaces AT weinsteina coisotropicpairsinpoissonandpresymplecticvectorspaces |
| first_indexed |
2025-12-02T01:25:13Z |
| last_indexed |
2025-12-02T01:25:13Z |
| _version_ |
1850861332035796992 |