(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces

We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Lorand, J., Weinstein, А.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147140
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147140
record_format dspace
spelling Lorand, J.
Weinstein, А.
2019-02-13T17:24:51Z
2019-02-13T17:24:51Z
2015
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 15A21; 18B10; 53D99
DOI:10.3842/SIGMA.2015.072
https://nasplib.isofts.kiev.ua/handle/123456789/147140
We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other.
This paper is a contribution to the Special Issue on Poisson Geometry in Mathematics and Physics. The full collection is available at http://www.emis.de/journals/SIGMA/Poisson2014.html. Jonathan Lorand was partially supported by ETH Zurich, the city of Zurich, and the Anna & Hans K¨agi Foundation. Part of this research was conducted while he was at UC Berkeley as a Visiting Student Researcher. The authors wish to thank the referees, in particular for comments which led to a more concise presentation of our results.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
(Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
spellingShingle (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
Lorand, J.
Weinstein, А.
title_short (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_full (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_fullStr (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_full_unstemmed (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces
title_sort (co)isotropic pairs in poisson and presymplectic vector spaces
author Lorand, J.
Weinstein, А.
author_facet Lorand, J.
Weinstein, А.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We give two equivalent sets of invariants which classify pairs of coisotropic subspaces of finite-dimensional Poisson vector spaces. For this it is convenient to dualize; we work with pairs of isotropic subspaces of presymplectic vector spaces. We identify ten elementary types which are the building blocks of such pairs, and we write down a matrix, invertible over Z, which takes one 10-tuple of invariants to the other.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147140
citation_txt (Co)isotropic Pairs in Poisson and Presymplectic Vector Spaces / J. Lorand, A. Weinstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.
work_keys_str_mv AT lorandj coisotropicpairsinpoissonandpresymplecticvectorspaces
AT weinsteina coisotropicpairsinpoissonandpresymplecticvectorspaces
first_indexed 2025-12-02T01:25:13Z
last_indexed 2025-12-02T01:25:13Z
_version_ 1850861332035796992