Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators
For each of the eight n-th derivative parameter changing formulas for Gauss hypergeometric functions a corresponding fractional integration formula is given. For both types of formulas the differential or integral operator is intertwining between two actions of the hypergeometric differential operat...
Gespeichert in:
| Datum: | 2015 |
|---|---|
| 1. Verfasser: | Koornwinder, T.H. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2015
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147142 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Fractional Integral and Generalized Stieltjes Transforms for Hypergeometric Functions as Transmutation Operators / T.H. Koornwinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 26 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On transformation formulas for theta hypergeometric functions
von: Denis, R.Y., et al.
Veröffentlicht: (2012) -
The Cauchy-Stieltjes integrals in the theory of analytic functions
von: V. I. Ryazanov
Veröffentlicht: (2017) -
The algorithms of constructing the continued fractions for any rations of the hypergeometric Gaussian functions
von: O. Manziy, et al.
Veröffentlicht: (2017) -
Integral representations for the hypergeometric function F8(4)
von: A. N. Novitskaja
Veröffentlicht: (2014) -
On the transmutation of the Lions operator to the simplest form
von: Yu. S. Linchuk
Veröffentlicht: (2017)