An Asymmetric Noncommutative Torus

We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is no...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2015
Main Authors: Dąbrowski, L., Sitarz, A.
Format: Article
Language:English
Published: Інститут математики НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/147144
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147144
record_format dspace
spelling Dąbrowski, L.
Sitarz, A.
2019-02-13T17:27:07Z
2019-02-13T17:27:07Z
2015
An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58B34; 46L87
DOI:10.3842/SIGMA.2015.075
https://nasplib.isofts.kiev.ua/handle/123456789/147144
We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
L.D. gratefully acknowledges the hospitality of the Institute of Physics, Jagiellonian University in Krak´ow. L.D. partially supported by PRIN 2010 grant “Operator Algebras, Noncommutative Geometry and Applications”, A.S. partially supported by NCN grant 2012/06/M/ST1/00169. The authors express their gratitude to the referees for valuable comments.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
An Asymmetric Noncommutative Torus
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title An Asymmetric Noncommutative Torus
spellingShingle An Asymmetric Noncommutative Torus
Dąbrowski, L.
Sitarz, A.
title_short An Asymmetric Noncommutative Torus
title_full An Asymmetric Noncommutative Torus
title_fullStr An Asymmetric Noncommutative Torus
title_full_unstemmed An Asymmetric Noncommutative Torus
title_sort asymmetric noncommutative torus
author Dąbrowski, L.
Sitarz, A.
author_facet Dąbrowski, L.
Sitarz, A.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147144
citation_txt An Asymmetric Noncommutative Torus / L. Dąbrowski, A. Sitarz // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT dabrowskil anasymmetricnoncommutativetorus
AT sitarza anasymmetricnoncommutativetorus
AT dabrowskil asymmetricnoncommutativetorus
AT sitarza asymmetricnoncommutativetorus
first_indexed 2025-11-30T12:59:19Z
last_indexed 2025-11-30T12:59:19Z
_version_ 1850857710510145536