Fast Basins and Branched Fractal Manifolds of Attractors of Iterated Function Systems

The fast basin of an attractor of an iterated function system (IFS) is the set of points in the domain of the IFS whose orbits under the associated semigroup intersect the attractor. Fast basins can have non-integer dimension and comprise a class of deterministic fractal sets. The relationship betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
Hauptverfasser: Barnsley, M.F., Vince, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147148
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Fast Basins and Branched Fractal Manifolds of Attractors of Iterated Function Systems / M.F. Barnsley, A. Vince // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The fast basin of an attractor of an iterated function system (IFS) is the set of points in the domain of the IFS whose orbits under the associated semigroup intersect the attractor. Fast basins can have non-integer dimension and comprise a class of deterministic fractal sets. The relationship between the basin and the fast basin of a point-fibred attractor is analyzed. To better understand the topology and geometry of fast basins, and because of analogies with analytic continuation, branched fractal manifolds are introduced. A branched fractal manifold is a metric space constructed from the extended code space of a point-fibred attractor, by identifying some addresses. Typically, a branched fractal manifold is a union of a nondenumerable collection of nonhomeomorphic objects, isometric copies of generalized fractal blowups of the attractor.
ISSN:1815-0659