On Integrable Perturbations of Some Nonholonomic Systems

Integrable perturbations of the nonholonomic Suslov, Veselova, Chaplygin and Heisenberg problems are discussed in the framework of the classical Bertrand-Darboux method. We study the relations between the Bertrand-Darboux type equations, well studied in the holonomic case, with their nonholonomic co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2015
1. Verfasser: Tsiganov, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2015
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147151
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Integrable Perturbations of Some Nonholonomic Systems / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147151
record_format dspace
spelling Tsiganov, A.V.
2019-02-13T17:44:02Z
2019-02-13T17:44:02Z
2015
On Integrable Perturbations of Some Nonholonomic Systems / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J60; 70G45; 70H45
DOI:10.3842/SIGMA.2015.085
https://nasplib.isofts.kiev.ua/handle/123456789/147151
Integrable perturbations of the nonholonomic Suslov, Veselova, Chaplygin and Heisenberg problems are discussed in the framework of the classical Bertrand-Darboux method. We study the relations between the Bertrand-Darboux type equations, well studied in the holonomic case, with their nonholonomic counterparts and apply the results to the construction of nonholonomic integrable potentials from the known potentials in the holonomic case.
This paper is a contribution to the Special Issue on Analytical Mechanics and Dif ferential Geometry in honour of Sergio Benenti. The full collection is available at http://www.emis.de/journals/SIGMA/Benenti.html. We are greatly indebted B. Jovanovi´c and the anonymous referees for a relevant contribution to improve the paper. The work on the revised, final version of this paper was supported by Russian Science Foundation (project No 15-12-20035).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Integrable Perturbations of Some Nonholonomic Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Integrable Perturbations of Some Nonholonomic Systems
spellingShingle On Integrable Perturbations of Some Nonholonomic Systems
Tsiganov, A.V.
title_short On Integrable Perturbations of Some Nonholonomic Systems
title_full On Integrable Perturbations of Some Nonholonomic Systems
title_fullStr On Integrable Perturbations of Some Nonholonomic Systems
title_full_unstemmed On Integrable Perturbations of Some Nonholonomic Systems
title_sort on integrable perturbations of some nonholonomic systems
author Tsiganov, A.V.
author_facet Tsiganov, A.V.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Integrable perturbations of the nonholonomic Suslov, Veselova, Chaplygin and Heisenberg problems are discussed in the framework of the classical Bertrand-Darboux method. We study the relations between the Bertrand-Darboux type equations, well studied in the holonomic case, with their nonholonomic counterparts and apply the results to the construction of nonholonomic integrable potentials from the known potentials in the holonomic case.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147151
citation_txt On Integrable Perturbations of Some Nonholonomic Systems / A.V. Tsiganov // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT tsiganovav onintegrableperturbationsofsomenonholonomicsystems
first_indexed 2025-12-01T23:12:35Z
last_indexed 2025-12-01T23:12:35Z
_version_ 1850861121575059456