A Classical Limit of Noumi's q-Integral Operator

We demonstrate how a known Whittaker function integral identity arises from the t=0 and q→1 limit of the Macdonald polynomial eigenrelation satisfied by Noumi's q-integral operator.

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2015
Автори: Borodin, A., Corwin, I., Remenik, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147165
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Classical Limit of Noumi's q-Integral Operator / A. Borodin, I. Corwin, D. Remenik // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147165
record_format dspace
spelling Borodin, A.
Corwin, I.
Remenik, D.
2019-02-13T18:00:37Z
2019-02-13T18:00:37Z
2015
A Classical Limit of Noumi's q-Integral Operator / A. Borodin, I. Corwin, D. Remenik // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 05E05; 33D52; 33D52; 82B23
DOI:10.3842/SIGMA.2015.098
https://nasplib.isofts.kiev.ua/handle/123456789/147165
We demonstrate how a known Whittaker function integral identity arises from the t=0 and q→1 limit of the Macdonald polynomial eigenrelation satisfied by Noumi's q-integral operator.
We appreciate helpful comments from our referees. AB was partially supported by the NSF grant DMS-1056390. IC was partially supported by the NSF through DMS-1208998 as well as by the Clay Mathematics Institute through the Clay Research Fellowship, by the Institute Henri Poincar´e through the Poincar´e Chair, and by the Packard Foundation through a Packard Foundation Fellowship. DR was partially supported by Fondecyt Grant 1120309, by Conicyt Basal-CMM, and by Programa Iniciativa Cient´ıfica Milenio grant number NC130062 through Nucleus Millenium Stochastic Models of Complex and Disordered Systems.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Classical Limit of Noumi's q-Integral Operator
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Classical Limit of Noumi's q-Integral Operator
spellingShingle A Classical Limit of Noumi's q-Integral Operator
Borodin, A.
Corwin, I.
Remenik, D.
title_short A Classical Limit of Noumi's q-Integral Operator
title_full A Classical Limit of Noumi's q-Integral Operator
title_fullStr A Classical Limit of Noumi's q-Integral Operator
title_full_unstemmed A Classical Limit of Noumi's q-Integral Operator
title_sort classical limit of noumi's q-integral operator
author Borodin, A.
Corwin, I.
Remenik, D.
author_facet Borodin, A.
Corwin, I.
Remenik, D.
publishDate 2015
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We demonstrate how a known Whittaker function integral identity arises from the t=0 and q→1 limit of the Macdonald polynomial eigenrelation satisfied by Noumi's q-integral operator.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147165
citation_txt A Classical Limit of Noumi's q-Integral Operator / A. Borodin, I. Corwin, D. Remenik // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT borodina aclassicallimitofnoumisqintegraloperator
AT corwini aclassicallimitofnoumisqintegraloperator
AT remenikd aclassicallimitofnoumisqintegraloperator
AT borodina classicallimitofnoumisqintegraloperator
AT corwini classicallimitofnoumisqintegraloperator
AT remenikd classicallimitofnoumisqintegraloperator
first_indexed 2025-12-07T15:24:16Z
last_indexed 2025-12-07T15:24:16Z
_version_ 1850863577092587520