The Fourier U(2) Group and Separation of Discrete Variables

The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R), whose maximal compact subgroup is the Fourier group U(2)F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
1. Verfasser: Wolf, K.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147171
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Fourier U(2) Group and Separation of Discrete Variables / K.B. Wolf, L.E. Vicent // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147171
record_format dspace
spelling Wolf, K.B.
2019-02-13T18:08:04Z
2019-02-13T18:08:04Z
2011
The Fourier U(2) Group and Separation of Discrete Variables / K.B. Wolf, L.E. Vicent // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 20F28; 22E46; 33E30; 42B99; 78A05; 94A15
DOI:10.3842/SIGMA.2011.053
https://nasplib.isofts.kiev.ua/handle/123456789/147171
The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R), whose maximal compact subgroup is the Fourier group U(2)F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra so(4). Two distinct subalgebra chains are used to model arrays of N² points placed along Cartesian or polar (radius and angle) coordinates, thus realizing one case of separation in two discrete coordinates. The N2-vectors in this space are digital (pixellated) images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible.
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. We thank the support of the Optica Matem´atica ´ projects DGAPA-UNAM IN-105008 and SEPCONACYT 79899, and we thank Guillermo Kr¨otzsch (ICF-UNAM) for his assistance with the graphics and Juvenal Rueda-Paz (Facultad de Ciencias, Universidad Aut´onoma del Estado de Morelos) for his support with the manuscript.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Fourier U(2) Group and Separation of Discrete Variables
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Fourier U(2) Group and Separation of Discrete Variables
spellingShingle The Fourier U(2) Group and Separation of Discrete Variables
Wolf, K.B.
title_short The Fourier U(2) Group and Separation of Discrete Variables
title_full The Fourier U(2) Group and Separation of Discrete Variables
title_fullStr The Fourier U(2) Group and Separation of Discrete Variables
title_full_unstemmed The Fourier U(2) Group and Separation of Discrete Variables
title_sort fourier u(2) group and separation of discrete variables
author Wolf, K.B.
author_facet Wolf, K.B.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The linear canonical transformations of geometric optics on two-dimensional screens form the group Sp(4,R), whose maximal compact subgroup is the Fourier group U(2)F; this includes isotropic and anisotropic Fourier transforms, screen rotations and gyrations in the phase space of ray positions and optical momenta. Deforming classical optics into a Hamiltonian system whose positions and momenta range over a finite set of values, leads us to the finite oscillator model, which is ruled by the Lie algebra so(4). Two distinct subalgebra chains are used to model arrays of N² points placed along Cartesian or polar (radius and angle) coordinates, thus realizing one case of separation in two discrete coordinates. The N2-vectors in this space are digital (pixellated) images on either of these two grids, related by a unitary transformation. Here we examine the unitary action of the analogue Fourier group on such images, whose rotations are particularly visible.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147171
citation_txt The Fourier U(2) Group and Separation of Discrete Variables / K.B. Wolf, L.E. Vicent // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT wolfkb thefourieru2groupandseparationofdiscretevariables
AT wolfkb fourieru2groupandseparationofdiscretevariables
first_indexed 2025-12-07T16:10:16Z
last_indexed 2025-12-07T16:10:16Z
_version_ 1850866470845677568