Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform

The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
Hauptverfasser: Ballesteros, A., Enciso, A., Herranz, F.J., Ragnisco, O., Riglioni, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147172
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147172
record_format dspace
spelling Ballesteros, A.
Enciso, A.
Herranz, F.J.
Ragnisco, O.
Riglioni, D.
2019-02-13T18:08:35Z
2019-02-13T18:08:35Z
2011
Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J35; 70H06; 81R12
DOI:10.3842/SIGMA.2011.048
https://nasplib.isofts.kiev.ua/handle/123456789/147172
The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler-Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler-Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace-Runge-Lenz N-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented.
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. This work was partially supported by the Spanish MICINN under grants MTM2010-18556 and FIS2008-00209, by the Junta de Castilla y Le´on (project GR224), by the Banco Santander–UCM (grant GR58/08-910556) and by the Italian–Spanish INFN–MICINN (project ACI2009-1083). F.J.H. is deeply grateful to W. Miller Jr. for very helpful suggestions on the St¨ackel transform as well on superintegrability.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
spellingShingle Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
Ballesteros, A.
Enciso, A.
Herranz, F.J.
Ragnisco, O.
Riglioni, D.
title_short Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_full Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_fullStr Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_full_unstemmed Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform
title_sort superintegrable oscillator and kepler systems on spaces of nonconstant curvature via the stäckel transform
author Ballesteros, A.
Enciso, A.
Herranz, F.J.
Ragnisco, O.
Riglioni, D.
author_facet Ballesteros, A.
Enciso, A.
Herranz, F.J.
Ragnisco, O.
Riglioni, D.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description The Stäckel transform is applied to the geodesic motion on Euclidean space, through the harmonic oscillator and Kepler-Coloumb potentials, in order to obtain maximally superintegrable classical systems on N-dimensional Riemannian spaces of nonconstant curvature. By one hand, the harmonic oscillator potential leads to two families of superintegrable systems which are interpreted as an intrinsic Kepler-Coloumb system on a hyperbolic curved space and as the so-called Darboux III oscillator. On the other, the Kepler-Coloumb potential gives rise to an oscillator system on a spherical curved space as well as to the Taub-NUT oscillator. Their integrals of motion are explicitly given. The role of the (flat/curved) Fradkin tensor and Laplace-Runge-Lenz N-vector for all of these Hamiltonians is highlighted throughout the paper. The corresponding quantum maximally superintegrable systems are also presented.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147172
citation_txt Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the Stäckel Transform / A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, D. Riglioni // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 48 назв. — англ.
work_keys_str_mv AT ballesterosa superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT encisoa superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT herranzfj superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT ragniscoo superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
AT riglionid superintegrableoscillatorandkeplersystemsonspacesofnonconstantcurvatureviathestackeltransform
first_indexed 2025-12-07T19:02:55Z
last_indexed 2025-12-07T19:02:55Z
_version_ 1850877333069627392