On Parameter Differentiation for Integral Representations of Associated Legendre Functions

For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2011
1. Verfasser: Cohl, H.S.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2011
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147177
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On Parameter Differentiation for Integral Representations of Associated Legendre Functions / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147177
record_format dspace
spelling Cohl, H.S.
2019-02-13T18:18:07Z
2019-02-13T18:18:07Z
2011
On Parameter Differentiation for Integral Representations of Associated Legendre Functions / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 31B05; 31B10; 33B10; 33B15; 33C05; 33C10
DOI:10.3842/SIGMA.2011.050
https://nasplib.isofts.kiev.ua/handle/123456789/147177
For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function f: C\{−1,1}→C given by f(z)=z/(√(z+1)√(z−1)).
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. I would like to thank Dr. A.F.M. ter Elst for extremely valuable discussions and acknowledge funding for time to write this paper from the Dean of the Faculty of Science at the University of Auckland in the form of a three month stipend to enhance University of Auckland 2012 PBRF Performance. I would like to express my gratitude to the anonymous referees whose helpful comments improved this paper. I would also like to thank F.W.J. Olver for helpful discussions. Part of this work was conducted while the author was a National Research Council Research Postdoctoral Associate in the Information Technology Laboratory of the National Institute of Standards and Technology.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Parameter Differentiation for Integral Representations of Associated Legendre Functions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Parameter Differentiation for Integral Representations of Associated Legendre Functions
spellingShingle On Parameter Differentiation for Integral Representations of Associated Legendre Functions
Cohl, H.S.
title_short On Parameter Differentiation for Integral Representations of Associated Legendre Functions
title_full On Parameter Differentiation for Integral Representations of Associated Legendre Functions
title_fullStr On Parameter Differentiation for Integral Representations of Associated Legendre Functions
title_full_unstemmed On Parameter Differentiation for Integral Representations of Associated Legendre Functions
title_sort on parameter differentiation for integral representations of associated legendre functions
author Cohl, H.S.
author_facet Cohl, H.S.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For integral representations of associated Legendre functions in terms of modified Bessel functions, we establish justification for differentiation under the integral sign with respect to parameters. With this justification, derivatives for associated Legendre functions of the first and second kind with respect to the degree are evaluated at odd-half-integer degrees, for general complex-orders, and derivatives with respect to the order are evaluated at integer-orders, for general complex-degrees. We also discuss the properties of the complex function f: C\{−1,1}→C given by f(z)=z/(√(z+1)√(z−1)).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147177
citation_txt On Parameter Differentiation for Integral Representations of Associated Legendre Functions / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.
work_keys_str_mv AT cohlhs onparameterdifferentiationforintegralrepresentationsofassociatedlegendrefunctions
first_indexed 2025-12-02T12:21:43Z
last_indexed 2025-12-02T12:21:43Z
_version_ 1850862506312990720