Balance Systems and the Variational Bicomplex

In this work we show that the systems of balance equations (balance systems) of continuum thermodynamics occupy a natural place in the variational bicomplex formalism. We apply the vertical homotopy decomposition to get a local splitting (in a convenient domain) of a general balance system as the su...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2011
Автор: Preston, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147185
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Balance Systems and the Variational Bicomplex / S. Preston // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147185
record_format dspace
spelling Preston, S.
2019-02-13T18:39:56Z
2019-02-13T18:39:56Z
2011
Balance Systems and the Variational Bicomplex / S. Preston // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 49Q99; 35Q80
DOI:10.3842/SIGMA.2011.063
https://nasplib.isofts.kiev.ua/handle/123456789/147185
In this work we show that the systems of balance equations (balance systems) of continuum thermodynamics occupy a natural place in the variational bicomplex formalism. We apply the vertical homotopy decomposition to get a local splitting (in a convenient domain) of a general balance system as the sum of a Lagrangian part and a complemental ''pure non-Lagrangian'' balance system. In the case when derivatives of the dynamical fields do not enter the constitutive relations of the balance system, the ''pure non-Lagrangian'' systems coincide with the systems introduced by S. Godunov [Soviet Math. Dokl. 2 (1961), 947-948] and, later, asserted as the canonical hyperbolic form of balance systems in [Müller I., Ruggeri T., Rational extended thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, 1998].
This paper is a contribution to the Special Issue “Symmetry, Separation, Super-integrability and Special Functions (S⁴)”. The full collection is available at http://www.emis.de/journals/SIGMA/S4.html. I would like to thank the second referee for his recommendations and comments. They allowed me to correct and/or clarify the formulations of some results and their proofs.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Balance Systems and the Variational Bicomplex
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Balance Systems and the Variational Bicomplex
spellingShingle Balance Systems and the Variational Bicomplex
Preston, S.
title_short Balance Systems and the Variational Bicomplex
title_full Balance Systems and the Variational Bicomplex
title_fullStr Balance Systems and the Variational Bicomplex
title_full_unstemmed Balance Systems and the Variational Bicomplex
title_sort balance systems and the variational bicomplex
author Preston, S.
author_facet Preston, S.
publishDate 2011
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this work we show that the systems of balance equations (balance systems) of continuum thermodynamics occupy a natural place in the variational bicomplex formalism. We apply the vertical homotopy decomposition to get a local splitting (in a convenient domain) of a general balance system as the sum of a Lagrangian part and a complemental ''pure non-Lagrangian'' balance system. In the case when derivatives of the dynamical fields do not enter the constitutive relations of the balance system, the ''pure non-Lagrangian'' systems coincide with the systems introduced by S. Godunov [Soviet Math. Dokl. 2 (1961), 947-948] and, later, asserted as the canonical hyperbolic form of balance systems in [Müller I., Ruggeri T., Rational extended thermodynamics, 2nd ed., Springer Tracts in Natural Philosophy, Vol. 37, Springer-Verlag, New York, 1998].
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147185
citation_txt Balance Systems and the Variational Bicomplex / S. Preston // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT prestons balancesystemsandthevariationalbicomplex
first_indexed 2025-12-07T18:52:42Z
last_indexed 2025-12-07T18:52:42Z
_version_ 1850876690428854272