Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows
We use a connection between relativistic hydrodynamics and scalar field theory to generate exact analytic solutions describing non-stationary inhomogeneous flows of the perfect fluid with one-parametric equation of state (EOS) p = p(ε). For linear EOS p = κε we obtain self-similar solutions in the c...
Gespeichert in:
| Datum: | 2007 |
|---|---|
| Hauptverfasser: | Borshch, M.S., Zhdanov, V.I. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Schriftenreihe: | Symmetry, Integrability and Geometry: Methods and Applications |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147190 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows / M.S. Borshch, V.I. Zhdanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows
von: Borshch, M.S., et al.
Veröffentlicht: (2007) -
On exact solutions of the nonlinear heat equation
von: A. F. Barannyk, et al.
Veröffentlicht: (2019) -
On exact solutions of the nonlinear heat equation
von: Barannyk, A.F., et al.
Veröffentlicht: (2019) -
On exact solutions of the nonlinear heat equation
von: Barannyk, A.F., et al.
Veröffentlicht: (2019) -
Stability of exact solutions of the cubic-quintic nonlinear Schrödinger equation with periodic potential
von: Kengne, E., et al.
Veröffentlicht: (2010)