Conformal Metrics with Constant Q-Curvature

We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
1. Verfasser: Malchiodi, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147193
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Conformal Metrics with Constant Q-Curvature / A. Malchiodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 46 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147193
record_format dspace
spelling Malchiodi, A.
2019-02-13T18:55:51Z
2019-02-13T18:55:51Z
2007
Conformal Metrics with Constant Q-Curvature / A. Malchiodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 46 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 35B33; 35J35; 53A30; 53C21
https://nasplib.isofts.kiev.ua/handle/123456789/147193
We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal barycenters of the manifold.
This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. The author has been supported by M.U.R.S.T within the PRIN 2006 Variational Methods and Nonlinear Differential Equations.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Conformal Metrics with Constant Q-Curvature
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Conformal Metrics with Constant Q-Curvature
spellingShingle Conformal Metrics with Constant Q-Curvature
Malchiodi, A.
title_short Conformal Metrics with Constant Q-Curvature
title_full Conformal Metrics with Constant Q-Curvature
title_fullStr Conformal Metrics with Constant Q-Curvature
title_full_unstemmed Conformal Metrics with Constant Q-Curvature
title_sort conformal metrics with constant q-curvature
author Malchiodi, A.
author_facet Malchiodi, A.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal barycenters of the manifold.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147193
citation_txt Conformal Metrics with Constant Q-Curvature / A. Malchiodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 46 назв. — англ.
work_keys_str_mv AT malchiodia conformalmetricswithconstantqcurvature
first_indexed 2025-12-07T15:26:02Z
last_indexed 2025-12-07T15:26:02Z
_version_ 1850863687691141120