Conformal Metrics with Constant Q-Curvature
We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal ba...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2007 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147193 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Conformal Metrics with Constant Q-Curvature / A. Malchiodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 46 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147193 |
|---|---|
| record_format |
dspace |
| spelling |
Malchiodi, A. 2019-02-13T18:55:51Z 2019-02-13T18:55:51Z 2007 Conformal Metrics with Constant Q-Curvature / A. Malchiodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 46 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35B33; 35J35; 53A30; 53C21 https://nasplib.isofts.kiev.ua/handle/123456789/147193 We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal barycenters of the manifold. This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. The author has been supported by M.U.R.S.T within the PRIN 2006 Variational Methods and Nonlinear Differential Equations. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Conformal Metrics with Constant Q-Curvature Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Conformal Metrics with Constant Q-Curvature |
| spellingShingle |
Conformal Metrics with Constant Q-Curvature Malchiodi, A. |
| title_short |
Conformal Metrics with Constant Q-Curvature |
| title_full |
Conformal Metrics with Constant Q-Curvature |
| title_fullStr |
Conformal Metrics with Constant Q-Curvature |
| title_full_unstemmed |
Conformal Metrics with Constant Q-Curvature |
| title_sort |
conformal metrics with constant q-curvature |
| author |
Malchiodi, A. |
| author_facet |
Malchiodi, A. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We consider the problem of varying conformally the metric of a four dimensional manifold in order to obtain constant Q-curvature. The problem is variational, and solutions are in general found as critical points of saddle type. We show how the problem leads naturally to consider the set of formal barycenters of the manifold.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147193 |
| citation_txt |
Conformal Metrics with Constant Q-Curvature / A. Malchiodi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 46 назв. — англ. |
| work_keys_str_mv |
AT malchiodia conformalmetricswithconstantqcurvature |
| first_indexed |
2025-12-07T15:26:02Z |
| last_indexed |
2025-12-07T15:26:02Z |
| _version_ |
1850863687691141120 |