Differential Invariants of Conformal and Projective Surfaces
We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2007 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147204 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Differential Invariants of Conformal and Projective Surfaces / E. Hubert, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147204 |
|---|---|
| record_format |
dspace |
| spelling |
Hubert, E. Olver, P.J. 2019-02-13T19:02:42Z 2019-02-13T19:02:42Z 2007 Differential Invariants of Conformal and Projective Surfaces / E. Hubert, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14L30; 70G65; 53A30; 53A20; 53A55; 12H05 https://nasplib.isofts.kiev.ua/handle/123456789/147204 We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames. This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. This research was initiated during the first author’s visit to the Institute for Mathematics and its Applications (I.M.A.) at the University of Minnesota during 2007–2008 with additional support from the Fulbright visiting scholar program. The second author is supported in part by NSF Grant DMS 05–05293. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Differential Invariants of Conformal and Projective Surfaces Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Differential Invariants of Conformal and Projective Surfaces |
| spellingShingle |
Differential Invariants of Conformal and Projective Surfaces Hubert, E. Olver, P.J. |
| title_short |
Differential Invariants of Conformal and Projective Surfaces |
| title_full |
Differential Invariants of Conformal and Projective Surfaces |
| title_fullStr |
Differential Invariants of Conformal and Projective Surfaces |
| title_full_unstemmed |
Differential Invariants of Conformal and Projective Surfaces |
| title_sort |
differential invariants of conformal and projective surfaces |
| author |
Hubert, E. Olver, P.J. |
| author_facet |
Hubert, E. Olver, P.J. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147204 |
| citation_txt |
Differential Invariants of Conformal and Projective Surfaces / E. Hubert, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ. |
| work_keys_str_mv |
AT huberte differentialinvariantsofconformalandprojectivesurfaces AT olverpj differentialinvariantsofconformalandprojectivesurfaces |
| first_indexed |
2025-12-07T18:31:44Z |
| last_indexed |
2025-12-07T18:31:44Z |
| _version_ |
1850875371066490880 |