Differential Invariants of Conformal and Projective Surfaces

We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
Hauptverfasser: Hubert, E., Olver, P.J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147204
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Differential Invariants of Conformal and Projective Surfaces / E. Hubert, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147204
record_format dspace
spelling Hubert, E.
Olver, P.J.
2019-02-13T19:02:42Z
2019-02-13T19:02:42Z
2007
Differential Invariants of Conformal and Projective Surfaces / E. Hubert, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 14L30; 70G65; 53A30; 53A20; 53A55; 12H05
https://nasplib.isofts.kiev.ua/handle/123456789/147204
We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.
This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. This research was initiated during the first author’s visit to the Institute for Mathematics and its Applications (I.M.A.) at the University of Minnesota during 2007–2008 with additional support from the Fulbright visiting scholar program. The second author is supported in part by NSF Grant DMS 05–05293.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Differential Invariants of Conformal and Projective Surfaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Differential Invariants of Conformal and Projective Surfaces
spellingShingle Differential Invariants of Conformal and Projective Surfaces
Hubert, E.
Olver, P.J.
title_short Differential Invariants of Conformal and Projective Surfaces
title_full Differential Invariants of Conformal and Projective Surfaces
title_fullStr Differential Invariants of Conformal and Projective Surfaces
title_full_unstemmed Differential Invariants of Conformal and Projective Surfaces
title_sort differential invariants of conformal and projective surfaces
author Hubert, E.
Olver, P.J.
author_facet Hubert, E.
Olver, P.J.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147204
citation_txt Differential Invariants of Conformal and Projective Surfaces / E. Hubert, P.J. Olver // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 39 назв. — англ.
work_keys_str_mv AT huberte differentialinvariantsofconformalandprojectivesurfaces
AT olverpj differentialinvariantsofconformalandprojectivesurfaces
first_indexed 2025-12-07T18:31:44Z
last_indexed 2025-12-07T18:31:44Z
_version_ 1850875371066490880