Conformal Powers of the Laplacian via Stereographic Projection

A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2007
1. Verfasser: Graham, C.R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2007
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/147207
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147207
record_format dspace
spelling Graham, C.R.
2019-02-13T19:04:33Z
2019-02-13T19:04:33Z
2007
Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53B20
https://nasplib.isofts.kiev.ua/handle/123456789/147207
A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping.
This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. This research was partially supported by NSF grant # DMS 0505701.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Conformal Powers of the Laplacian via Stereographic Projection
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Conformal Powers of the Laplacian via Stereographic Projection
spellingShingle Conformal Powers of the Laplacian via Stereographic Projection
Graham, C.R.
title_short Conformal Powers of the Laplacian via Stereographic Projection
title_full Conformal Powers of the Laplacian via Stereographic Projection
title_fullStr Conformal Powers of the Laplacian via Stereographic Projection
title_full_unstemmed Conformal Powers of the Laplacian via Stereographic Projection
title_sort conformal powers of the laplacian via stereographic projection
author Graham, C.R.
author_facet Graham, C.R.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147207
citation_txt Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT grahamcr conformalpowersofthelaplacianviastereographicprojection
first_indexed 2025-12-07T20:56:19Z
last_indexed 2025-12-07T20:56:19Z
_version_ 1850884467611140096