Conformal Powers of the Laplacian via Stereographic Projection
A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on E...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2007 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147207 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147207 |
|---|---|
| record_format |
dspace |
| spelling |
Graham, C.R. 2019-02-13T19:04:33Z 2019-02-13T19:04:33Z 2007 Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53B20 https://nasplib.isofts.kiev.ua/handle/123456789/147207 A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping. This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. This research was partially supported by NSF grant # DMS 0505701. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Conformal Powers of the Laplacian via Stereographic Projection Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Conformal Powers of the Laplacian via Stereographic Projection |
| spellingShingle |
Conformal Powers of the Laplacian via Stereographic Projection Graham, C.R. |
| title_short |
Conformal Powers of the Laplacian via Stereographic Projection |
| title_full |
Conformal Powers of the Laplacian via Stereographic Projection |
| title_fullStr |
Conformal Powers of the Laplacian via Stereographic Projection |
| title_full_unstemmed |
Conformal Powers of the Laplacian via Stereographic Projection |
| title_sort |
conformal powers of the laplacian via stereographic projection |
| author |
Graham, C.R. |
| author_facet |
Graham, C.R. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
A new derivation is given of Branson's factorization formula for the conformally invariant operator on the sphere whose principal part is the k-th power of the scalar Laplacian. The derivation deduces Branson's formula from knowledge of the corresponding conformally invariant operator on Euclidean space (the k-th power of the Euclidean Laplacian) via conjugation by the stereographic projection mapping.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147207 |
| citation_txt |
Conformal Powers of the Laplacian via Stereographic Projection / C.R. Graham // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT grahamcr conformalpowersofthelaplacianviastereographicprojection |
| first_indexed |
2025-12-07T20:56:19Z |
| last_indexed |
2025-12-07T20:56:19Z |
| _version_ |
1850884467611140096 |