On Gauss-Bonnet Curvatures
The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where t...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2007 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2007
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/147209 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Gauss-Bonnet Curvatures / M.L. Labbi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 38 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147209 |
|---|---|
| record_format |
dspace |
| spelling |
Labbi, M.L. 2019-02-13T19:06:09Z 2019-02-13T19:06:09Z 2007 On Gauss-Bonnet Curvatures / M.L. Labbi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 38 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53C20; 53C25 https://nasplib.isofts.kiev.ua/handle/123456789/147209 The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds. This paper is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson. The author would like to thank the referees for useful comments and especially for indicating me the related work of Patterson. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On Gauss-Bonnet Curvatures Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Gauss-Bonnet Curvatures |
| spellingShingle |
On Gauss-Bonnet Curvatures Labbi, M.L. |
| title_short |
On Gauss-Bonnet Curvatures |
| title_full |
On Gauss-Bonnet Curvatures |
| title_fullStr |
On Gauss-Bonnet Curvatures |
| title_full_unstemmed |
On Gauss-Bonnet Curvatures |
| title_sort |
on gauss-bonnet curvatures |
| author |
Labbi, M.L. |
| author_facet |
Labbi, M.L. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
The (2k)-th Gauss-Bonnet curvature is a generalization to higher dimensions of the (2k)-dimensional Gauss-Bonnet integrand, it coincides with the usual scalar curvature for k =1. The Gauss-Bonnet curvatures are used in theoretical physics to describe gravity in higher dimensional space times where they are known as the Lagrangian of Lovelock gravity, Gauss-Bonnet Gravity and Lanczos gravity. In this paper we present various aspects of these curvature invariants and review their variational properties. In particular, we discuss natural generalizations of the Yamabe problem, Einstein metrics and minimal submanifolds.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147209 |
| citation_txt |
On Gauss-Bonnet Curvatures / M.L. Labbi // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 38 назв. — англ. |
| work_keys_str_mv |
AT labbiml ongaussbonnetcurvatures |
| first_indexed |
2025-12-07T16:50:47Z |
| last_indexed |
2025-12-07T16:50:47Z |
| _version_ |
1850869020291497984 |