Integrability and Diffeomorphisms on Target Space

We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, gen...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2007
Автори: Adam, C., Sanchez-Guillen, J., Wereszczynski, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/147213
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrability and Diffeomorphisms on Target Space / C. Adam, J. Sanchez-Guillen, A. Wereszczynski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-147213
record_format dspace
spelling Adam, C.
Sanchez-Guillen, J.
Wereszczynski, A.
2019-02-13T19:10:06Z
2019-02-13T19:10:06Z
2007
Integrability and Diffeomorphisms on Target Space / C. Adam, J. Sanchez-Guillen, A. Wereszczynski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37K05; 37K30; 37K40; 58E50; 81R12; 81T10
https://nasplib.isofts.kiev.ua/handle/123456789/147213
We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, generated by a class of geometric target space transformations, namely the volume-preserving diffeomorphisms. We classify the possible conservation laws of field theories for the case of a three-dimensional target space. Further, we discuss some explicit examples.
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). A.W. gratefully acknowledges support from Adam Krzy˙zanowski Fund and Jagiellonian University (grant WRBW 41/07). C.A. and J.S.-G. thank MCyT (Spain) and FEDER (FPA2005-01963), and support from Xunta de Galicia (grant PGIDIT06PXIB296182PR and Conselleria de Educacion). Further, C.A. acknowledges support from the Austrian START award project FWF-Y-137-TEC and from the FWF project P161 05 NO 5 of N.J. Mauser.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Integrability and Diffeomorphisms on Target Space
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Integrability and Diffeomorphisms on Target Space
spellingShingle Integrability and Diffeomorphisms on Target Space
Adam, C.
Sanchez-Guillen, J.
Wereszczynski, A.
title_short Integrability and Diffeomorphisms on Target Space
title_full Integrability and Diffeomorphisms on Target Space
title_fullStr Integrability and Diffeomorphisms on Target Space
title_full_unstemmed Integrability and Diffeomorphisms on Target Space
title_sort integrability and diffeomorphisms on target space
author Adam, C.
Sanchez-Guillen, J.
Wereszczynski, A.
author_facet Adam, C.
Sanchez-Guillen, J.
Wereszczynski, A.
publishDate 2007
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, generated by a class of geometric target space transformations, namely the volume-preserving diffeomorphisms. We classify the possible conservation laws of field theories for the case of a three-dimensional target space. Further, we discuss some explicit examples.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/147213
citation_txt Integrability and Diffeomorphisms on Target Space / C. Adam, J. Sanchez-Guillen, A. Wereszczynski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT adamc integrabilityanddiffeomorphismsontargetspace
AT sanchezguillenj integrabilityanddiffeomorphismsontargetspace
AT wereszczynskia integrabilityanddiffeomorphismsontargetspace
first_indexed 2025-12-07T19:48:56Z
last_indexed 2025-12-07T19:48:56Z
_version_ 1850880228055842816