Integrability and Diffeomorphisms on Target Space
We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, gen...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2007 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2007
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/147213 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Integrability and Diffeomorphisms on Target Space / C. Adam, J. Sanchez-Guillen, A. Wereszczynski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-147213 |
|---|---|
| record_format |
dspace |
| spelling |
Adam, C. Sanchez-Guillen, J. Wereszczynski, A. 2019-02-13T19:10:06Z 2019-02-13T19:10:06Z 2007 Integrability and Diffeomorphisms on Target Space / C. Adam, J. Sanchez-Guillen, A. Wereszczynski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K05; 37K30; 37K40; 58E50; 81R12; 81T10 https://nasplib.isofts.kiev.ua/handle/123456789/147213 We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, generated by a class of geometric target space transformations, namely the volume-preserving diffeomorphisms. We classify the possible conservation laws of field theories for the case of a three-dimensional target space. Further, we discuss some explicit examples. This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine). A.W. gratefully acknowledges support from Adam Krzy˙zanowski Fund and Jagiellonian University (grant WRBW 41/07). C.A. and J.S.-G. thank MCyT (Spain) and FEDER (FPA2005-01963), and support from Xunta de Galicia (grant PGIDIT06PXIB296182PR and Conselleria de Educacion). Further, C.A. acknowledges support from the Austrian START award project FWF-Y-137-TEC and from the FWF project P161 05 NO 5 of N.J. Mauser. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Integrability and Diffeomorphisms on Target Space Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Integrability and Diffeomorphisms on Target Space |
| spellingShingle |
Integrability and Diffeomorphisms on Target Space Adam, C. Sanchez-Guillen, J. Wereszczynski, A. |
| title_short |
Integrability and Diffeomorphisms on Target Space |
| title_full |
Integrability and Diffeomorphisms on Target Space |
| title_fullStr |
Integrability and Diffeomorphisms on Target Space |
| title_full_unstemmed |
Integrability and Diffeomorphisms on Target Space |
| title_sort |
integrability and diffeomorphisms on target space |
| author |
Adam, C. Sanchez-Guillen, J. Wereszczynski, A. |
| author_facet |
Adam, C. Sanchez-Guillen, J. Wereszczynski, A. |
| publishDate |
2007 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, generated by a class of geometric target space transformations, namely the volume-preserving diffeomorphisms. We classify the possible conservation laws of field theories for the case of a three-dimensional target space. Further, we discuss some explicit examples.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/147213 |
| citation_txt |
Integrability and Diffeomorphisms on Target Space / C. Adam, J. Sanchez-Guillen, A. Wereszczynski // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
| work_keys_str_mv |
AT adamc integrabilityanddiffeomorphismsontargetspace AT sanchezguillenj integrabilityanddiffeomorphismsontargetspace AT wereszczynskia integrabilityanddiffeomorphismsontargetspace |
| first_indexed |
2025-12-07T19:48:56Z |
| last_indexed |
2025-12-07T19:48:56Z |
| _version_ |
1850880228055842816 |